Inhalt

1	Vorgehensweise	1
2 2.1	Stand von Wissenschaft und Technik Thermooptische Effekte	5 5
2.1.1	Temperatur- und wellenlängenabhängiger Brechungsindex Lorentz-Lorenz-Gleichung	7 8
2.2	Kompensationsmethoden und Materialparameter Simulation thermooptischer Effekte	10 13
2.3.1	Simulation basierend auf der Kopplung von FEA und Strahlenoptik	14
2.3.2	Simulation basierend auf wellenoptischen Methoden Messmittel zur Bestimmung der	18
2.4.1	Fokusverschiebung Messmittel nach ISO-Norm 11146	19 19
2.4.2 2.5 2.5.1	Weitere Messmittel Bestimmung des Absorptionsgrads Spektrale Photometrie	20 21 22
2.5.2 2.5.3	Photothermale Messverfahren Kalorimetrie	23 25
2.6 2.6.1 2.6.2	Ultrakurze Laserpulse Yb:YAG-basierte Lasersysteme Dispersive Effekte	26 26 27
2.6.3 2.7	Erzeugung hoher Harmonischer Defizite im Stand von Wissenschaft und	29
	Technik	31
3 3.1	Methoden zur thermooptischen Simulation Definition thermischer Lasten und	33
3.1.1	Randbedingungen Thermische Lasten durch Absorption von	34
3.1.2	Laserstrahlung Thermische und mechanische	34
3.2 3.2.1	Randbedingungen Thermische Oberflächendeformation Aufbereitung der Finite-Elemente-Daten	36 36 37
3.2.2 3.3	Approximation der Deformationsdaten Analytisches Modell	38 39
3.3.1 3.3.2	Temperaturprofil Oberflächendeformation	39 41
3.4	Verifikation der Algorithmen	42

3.4.1	RMS-Fehler der Approximation	43
3.4.2	Abweichung der Fokuslage	44
3.4.3 3.5	Wellenfrontabweichung Einfluss der FE-Netzstruktur	45 48
3.5.1	Klassifikation der Netzstrukturen	49
3.5.2	Qualitätskriterien zur Beurteilung der	7.7
	Vernetzung	50
3.5.3	Einfluss auf die optischen Größen	51
3.6	Gleichzeitige Berücksichtigung thermischer und	
	dispersiver Effekte	54
3.6.1	Multiphysikalischer Simulationsansatz	54
3.6.2	Auswertung der Strahlkaustik	58
3.7	Transiente Analyse und thermische Lastfälle	60
4	Experimentelle Methoden	61
4.1	Photothermale Common-Path-Interferometrie	61
4.2	Thermografie	62
4.3	Bestimmung von Fokuslage und -verschiebung	63
4.4	Versuchsaufbau und -durchführung	65
4.4.1	Charakterisierung der variablen Fokussieroptik	65
4.4.2	Charakterisierung der Kunststofflinse	66
5	Analyse und Auslegung von thermisch	
	belasteten Optiken	69
5.1	Optiken für das Selective Laser Melting (SLM)	69
5.1.1	Variable Fokussieroptik	69
5.1.2	Transiente Fokusverschiebung beim SLM	76
5.2 5.2.1	Kunststoffoptiken für Laseranwendungen	87
D.Z. I	Experimentelle und simulative	87
5.2.2	Charakterisierung einer Asphäre aus PMMA Iterative Optimierung der Form der Asphäre	94
5.2.2 5.3	Optiken zur Erzeugung hoher Harmonischer	24
5.5	mittels ultrakurzen Laserpulsen	98
5.3.1	Auslegung der Fokussieroptiken	99
5.3.2	Thermomechanische Analyse	102
5.3.3	Einfluss thermooptischer und dispersiver	
	Effekte auf die Fokussierung ultrakurzer	
	Laserpulse	103
6	Zusammenfassung und Ausblick	107
7	Literaturverzeichnis	111
8	Anhang	119
8.1	Thermooptischer Koeffizient	119
8.2	Lorentz-Lorenz-Gleichung	119
8.3	Vermessung eines astigmatischen Gaußstrahls	
	über Detektion der Rayleigh-Streuung	121

8.4	Spektrale Verbreiterung durch	
	Selbstphasenmodulation	122
8.5	APDL-Code zur Definition thermischer Lasten	123
8.6	Radiale Wärmeleitungsgleichung mit	
	gaußförmiger Last	124
8.7	Parameter für den WLS-Algorithmus	126
8.8	Multiphysikalischer Simulationsansatz	127
8.9	Berechnung des Strahlradius	128
8 10	Strahlkaustiken PMMA-Asphäre	129