Inhalt

Einle	eitung	XIII
TEIL	I: Grundlagen des Unsupervised Learning	1
1	Unsupervised Learning im Ökosystem des maschinellen Lernens	3
	Grundbegriffe des maschinellen Lernens	3
	Regelbasiertes vs. maschinelles Lernen	4
	Supervised vs. Unsupervised	5
	Die Stärken und Schwächen des Supervised Learning	6
	Die Stärken und Schwächen des Unsupervised Learning	7
	Lösungen mit maschinellem Lernen durch Unsupervised	
	Learning verbessern	8
	Ein genauerer Blick auf überwachte Algorithmen	11
	Lineare Methoden	12
	Nachbarschaftsbasierte Methoden	13
	Baumbasierte Methoden	14
	Support Vector Machines	16
	Neuronale Netze	16
	Unüberwachte Algorithmen unter der Lupe	17
	Reduzierung der Dimensionalität	17
	Clustering	20
	Feature Extraction	22
	Unsupervised Deep Learning	23
	Sequenzielle Datenprobleme beim Unsupervised Learning	25
	Reinforcement Learning mithilfe von Unsupervised Learning	26
	Semi-supervised Learning	27
	Erfolgreiche Anwendungen von Unsupervised Learning	27
	Anomalieerkennung	28
	Zusammenfassung	29

Durchge	ehendes Projekt zum maschinellen Lernen
	ngebung einrichten
	rsionsverwaltung: Git
Das	s Git-Repository »handson-unsupervised-learning« klonen
Wi	ssenschaftliche Bibliotheken: Anaconda-Distribution von
	hon
Ne	uronale Netze: TensorFlow und Keras
	adient Boosting, Version 1: XGBoost
Gra	adient Boosting, Version 2: LightGBM
Clu	ıstering-Algorithmen
Inte	eraktive Computerumgebung: Jupyter Notebook
Die Dat	ten im Überblick
Datenv	orbereitung
	tenerfassung
Dat	ten erkunden
Fea	nturematrix und Labels-Array generieren
Fea	nture Engineering und Feature Selection
Da	ten visualisieren
Modell	vorbereitung
In ´	Trainings- und Testsets aufteilen
	ne Kostenfunktion auswählen
Set	s für k-fache Kreuzvalidierung erzeugen
Modell	e des maschinellen Lernens (Teil 1)
Mo	odell #1: Logistische Regression
Kennza	hlen bewerten
Wa	ahrheitsmatrix
Prä	zision/Trefferquote-Diagramm
Op	erationscharakteristik eines Beobachters
	e des maschinellen Lernens (Teil 2)
Mo	odell #2: Random Forests
Mo	odell #3: Gradient Boosting mit XGBoost
Mo	odell #4: Gradient Boosting mit LightGBM
	ung der vier Modelle mit dem Testset
Ensemb	bles
	peln
Endgül	tige Modellauswahl
Produk	tionspipeline
Zusamı	menfassung

TE	IL II: Unsupervised Learning mit Scikit-learn	73
3	Dimensionsreduktion	75
	Die Motivation zur Dimensionsreduktion	75
	Die MNIST-Zifferndatenbank	76
	Algorithmen zur Dimensionsreduktion	79
	Lineare Projektion vs. Manifold Learning	80
	Hauptkomponentenanalyse	80
	Hauptkomponentenanalyse, das Konzept	80
	PCA in der Praxis	81
	Sparse PCA	87
	Kernel-PCA	88
	Singulärwertzerlegung	89
	Zufallsprojektion	91
	Gaußsche Zufallsprojektion	91
	Sparse Zufallsprojektion	92
	Isomap	93
	Multidimensionale Skalierung	94
	Lokal lineare Einbettung	95
	Stochastische Nachbarschaftseinbettung mit Student-t-Verteilung	96
	Andere Methoden zur Dimensionsreduktion	98
	Dictionary Learning	98
	Unabhängigkeitsanalyse	99
	Zusammenfassung	100
4	Anomalieerkennung	103
	Kreditkartenbetrugserkennung	104
	Die Daten vorbereiten	104
	Anomalie-Score-Funktion definieren	104
	Bewertungskennzahlen definieren	105
	Eine Diagrammfunktion definieren	107
	Anomalieerkennung mit normaler PCA	107
	PCA-Komponenten gleich der Anzahl ursprünglicher	
	Dimensionen	108
	Suche nach der optimalen Anzahl von Hauptkomponenten	110
	Anomalieerkennung mit sparse PCA	112
	Anomalieerkennung mit Kernel-PCA	115
	Anomalieerkennung mit gaußscher Zufallsprojektion	117
	Anomalieerkennung mit sparse Zufallsprojektion	119
	Nicht lineare Anomalieerkennung	120

	Anomalicerkennung mit Dictionary Learning	121 123
	Anomalieerkennung mit Unabhängigkeitsanalyse	123
	Betrugserkennung auf dem Testset	124
	Anomalieerkennung mit normaler PCA auf dem Testset	123
	Anomalieerkennung auf dem Testset mit	126
	Unabhängigkeitsanalyse	126
	Anomalieerkennung mit Dictionary Learning auf dem Testset	128
	Zusammenfassung	129
5	Clustering	131
	Das MNIST-Ziffern-Dataset	132
	Datenvorbereitung	132
	Clustering-Algorithmen	133
	k-Means-Algorithmus	134
	k-Means-Trägheit	134
	Die Clustering-Ergebnisse bewerten	135
	k-Means-Genauigkeit	137
	k-Means und die Anzahl der Hauptkomponenten	138
	k-Means auf dem ursprünglichen Dataset	140
	Hierarchisches Clustering	141
	Agglomeratives hierarchisches Clustering	142
	Das Dendrogramm	143
	Die Clustering-Ergebnisse auswerten	145
	DBSCAN	147
	DBSCAN-Algorithmus	148
	DBSCAN auf unser Dataset anwenden	148
	HDBSCAN	150
	Zusammenfassung	151
6	Cuunnancamantiauuna	152
6	Gruppensegmentierung	153
	Lending-Club-Daten	153 154
	Datenvorbereitung	155
	String-Format in numerisches Format überführen	
	Fehlende Werte imputieren	156
	Den endgültigen Merkmalssatz auswählen und skalieren	158
	Labels für die Bewertung benennen	158
	Güte der Cluster	160
	k-Means-Anwendung	162
	Anwendung mit hierarchischem Clustering	164
	Anwendung mit HDBSCAN	168
	Zusammenfassung	170

TEIL III: Unsupervised Learning mit TensorFlow und Keras		
7	Autoencoder Neuronale Netze TensorFlow. Keras Autoencoder: der Encoder und der Decoder Untervollständige Autoencoder. Übervollständige Autoencoder Dichte vs. sparsame Autoencoder Autoencoder zur Rauschunterdrückung Variational Autoencoder	171 173 174 175 177 178 179 179 180 180
	Zusammenfassung	181
8	Praktische Autoencoder Datenvorbereitung. Die Bestandteile eines Autoencoders. Aktivierungsfunktionen. Unser erster Autoencoder Verlustfunktion. Optimizer Das Modell trainieren. Auf dem Testset bewerten Zweischichtiger untervollständiger Autoencoder mit linearer Aktivierungsfunktion. Die Anzahl der Knoten erhöhen Mehr Hidden-Schichten hinzufügen. Nicht linearer Autoencoder Übervollständiger Autoencoder mit linearer Aktivierung und	183 183 186 186 187 188 189 191 194 197 199 200 202
	Drop-out	205
	Sparse übervollständiger Autoencoder mit linearer Aktivierung Sparse übervollständiger Autoencoder mit linearer Aktivierung und	207
	Drop-out	209
	Mit verrauschten Datasets arbeiten	211
	Rauschreduzierender Autoencoder	211
	Autoencoder mit linearer Aktivierung Zweischichtiger rauschunterdrückender übervollständiger	212
	Autoencoder mit linearer Aktivierung	215

	Zweischichtiger rauschunterdrückender übervollständiger	
	Autoencoder mit ReLu-Aktivierung	217
	Zusammenfassung	219
9	Semi-supervised Learning	221
	Datenvorbereitung	221
	Supervised Modelle	224
	Unsupervised Modelle	226
	Semi-supervised Modelle	228
	Die Leistung von supervised und unsupervised Modellen	231
	Zusammenfassung	231
TEII	L IV: Deep Unsupervised Learning mit TensorFlow und Keras	233
ILII	Liv. Deep offsupervised Learning line refisorriow and keras	233
10	Empfehlungsdienste mit beschränkten Boltzmann-Maschinen	235
	Boltzmann-Maschinen	235
	Beschränkte Boltzmann-Maschinen.	236
	Empfehlungsdienste	237
	Kollaboratives Filtern	237
	Der Netflix Prize	238
	MovieLens-Dataset	238
	Datenvorbereitung	238
	Die Kostenfunktion definieren: mittlere quadratische	
	Abweichung	242
	Baseline-Experimente	243
	Matrixfaktorisierung	244
	Ein latenter Faktor	244
	Drei latente Faktoren	246
	Fünf latente Faktoren	246
	Kollaboratives Filtern mit RBMs	247
	Die Architektur des neuronalen Netzes von RBMs	248
	Die Komponenten der RBM-Klasse erstellen	249
	Das RBM-Empfehlungssystem trainieren	251
	Zusammenfassung	253
11	Featureerkennung mit Deep Belief Networks	255
	Deep Belief Networks im Detail	255
	MNIST-Bildklassifizierung	256
	Beschränkte Boltzmann-Maschinen	257
	Die Komponenten der RBM-Klasse erstellen	258
	Mit dem RBM-Modell Bilder generieren	260

	Die Featuredetektoren der Zwischenstufen anzeigen	261
	Die drei RBMs für das DBN trainieren	262
	Featuredetektoren untersuchen	264
	Generierte Bilder betrachten	264
	Das vollständige DBN	267
	Wie das Training eines DBN funktioniert	271
	Das DBN trainieren	271
	Wie Unsupervised Learning das Supervised Learning unterstützt	272
	Bilder generieren, um eine bessere Bildklassifizierung zu	272
	erstellen	273
	Bildklassifizierung mit LightGBM	277
	Rein supervised Lösung	277
	Unsupervised und supervised Lösung	279
	Zusammenfassung	280
12	Generative Adversarial Networks	281
	GANs – das Konzept	281
	Die Stärke von GANs	282
	Deep Convolutional GANs	282
	Convolutional Neural Networks	283
	Noch einmal: DCGANs	287
	Generator des DCGAN	288
	Diskriminator des DCGAN	289
	Diskriminator- und gegnerische Modelle	290
	DCGAN für das MNIST-Dataset	291
	MNIST-DCGAN in Aktion	292
	Synthetische Bilder generieren	293
	Zusammenfassung	294
13	Zeitreihen-Clustering	297
	EKG-Daten	298
	Ansatz für Zeitreihen-Clustering	298
	k-Shape	298
	Zeitreihen-Clustering mit k-Shape auf ECGFiveDays	299
	Datenvorbereitung	299
	Training und Bewertung	304
	Zeitreihen-Clustering mit k-Shape auf ECG5000	305
	Datenvorbereitung	305
	Training und Bewertung	308
	Zeitreihen-Clustering mit k-Means auf ECG5000	310
	Zeitreihen-Clustering mit hierarchischem DBSCAN auf ECG5000	311
	Die Zeitreihen-Clustering-Algorithmen vergleichen	312

Vollständiger Lauf mit k-Shape	312
Vollständiger Lauf mit k-Means	314
Vollständiger Lauf mit HDBSCAN	315
Alle drei Zeitreihen-Clustering-Ansätze vergleichen	316
Zusammenfassung	318
Zum Schluss	319
Supervised Learning	320
Unsupervised Learning	320
Scikit-learn	321
TensorFlow und Keras	321
Reinforcement Learning	322
Die vielversprechendsten Bereiche des Unsupervised Learning	323
	324
Schlusswort	326
ΔΥ	327
	Vollständiger Lauf mit k-Means. Vollständiger Lauf mit HDBSCAN Alle drei Zeitreihen-Clustering-Ansätze vergleichen Zusammenfassung Zum Schluss Supervised Learning Unsupervised Learning Scikit-learn TensorFlow und Keras Reinforcement Learning Die vielversprechendsten Bereiche des Unsupervised Learning Die Zukunft des Unsupervised Learning Schlusswort.