Inhaltsverzeichnis

Inhaltsverzeich	nis	3
Vorwort		5
1. Entspanntes	Experimentieren, mit Sicherheit!	6
1.1 Chemie	ohne Gefahrstoffe? Die gibt's leider nicht!	6
	zur Sicherheit im Unterricht	
	ng und Kennzeichnung von Chemikalien	
	ungsbeurteilung bei Tätigkeiten mit Gefahrstoffen	
	offsymbole als Gefahrenhinweise zu den Chemikalien in diesem Buch	
2. Die Bedeutur	g des Experiments für den naturwissenschaftlichen Unterricht	10
3. Wer hat Ang	st vor dem Bunsenbrenner?	
Eine Konfror	ntationstherapie für ängstliche Lehrer	11
3.1 Bunsenbren	ner, Kartuschenbrenner und Teelicht im Vergleich	11
Versuch 1: E	Bau und Funktion des Bunsen- und Kartuschenbrenners	11
Versuch 2: F	lot Spots - Die heißesten Stellen in den Brennerflammen	12
Versuch 3: F	arbige Flammen	14
	Kupfermünzen in der Hitze versilbern und vergolden	
	Nutproben mit Feuer und Flammen	
	Der Dosenbrenner, eine schülertaugliche Wärmequelle	
Versuch 7: 2	Zur Belohnung Crème brûlée – Der Sternekoch greift zum Gasbrenner	19
	rplankonforme Experimente für Lehrer und Schüler	
4.1 Stoffe und E	nergie (1/2)	20
4.1.1 Was ist ei	n Stoff? Was ist Chemie?	20
Versuch 1:	Wir untersuchen Stoffe	20
	Feste und flüssige Stoffe – Wasser und Eis	
	Ist Luft auch ein Stoff?	
Versuch 4:	Auch unsichtbare Gase sind Stoffe – Man kann sie sogar umgießen	
Versuch 5:	Kunststoffe - Kunststoffabfälle trennen	
Versuch 6:	Farbstoffe - Farben trennen	
Versuch 7:	Geschmacksstoffe – Die Süß-Sauer-Falle und Farbe schmecken	_
Versuch 8:	Aromastoffe (Geruchsstoffe/Duftstoffe) – Vanille- und Zitronenaroma	
Versuch 10:	Treibstoffe - Das Seifenschiffchen	
	Klebstoffe – Wasser- und Gummibärchenkleber	
	Farbstoffe – Blauer Riese und blauer Zwerg im Suppenteller	
	St eine Stoffänderung?	
Versuch 1:	Stoffänderung schmecken - Verdauung beginnt im Mund Schon das ist Chemie! Geheimtinte aus Zitronensaft	
Versuch 2: Versuch 3:	Aus einer Brausetablette und Wasser wird ein Gas	
Versuch 4:	Kann es sein, dass ein Stoff ganz verschwindet?	
Versuch 5:	Stoffänderungen in der Küche – Nahrungsstoffe in der Hitze	
Versuch 6:	Unappetitlicher Obstsalat - Chemie kann's verhindern	
Versuch 7:	Schönes, rot glänzendes Kupfer durch Stoffänderung	

Versuch 8:	Farbige Ringe	36
Versuch 9:	Tinte aus Tee und zweimal Stoffänderung	37
Versuch 10	: Wir lassen Farben einfach verschwinden	38
Versuch 11	: Eine Lösung - vier Farben - und viermal Stoffänderung	38
Versuch 12	: Aus alt wird neu – Münzen reinigen	39
5. Stoffe und E	nergie (3/4)	40
Versuch 1:	Stoffe unterscheiden nach elektrischer Leitfähigkeit	40
Versuch 2:		
Versuch 3:	Feuer, Verbrennung, Voraussetzungen für den Verbrennungsvorgang	41
Versuch 4:	Brandschutz - Löschmethoden	42
6. Luft, Wasser	, Wetter (1/2)	43
Versuch 1:	Luft bremst, beschleunigt und bewegt Gegenstände	43
	Luft verdrängt Wasser - Gummibärchen auf Tauchstation	
Versuch 3:	Luftverschmutzung - Ruß und Feinstaub	46
7. Luft. Wasser	, Wetter (3/4)	46
	Wassereigenschaften - Wasser als Lösungsmittel	
	Zustandsformen des Wassers - Wie kommt das Wasser in die Wolke	40
Versucii Z.	und wie entsteht Blitzeis?	47
Versuch 3:	Der natürliche Wasserkreislauf - Ein Modellexperiment	48
	Wasserverschmutzung durch Waschmittel	
8. Der Zauber d	der Chemie: Eine kleine Chemie-Show für die Grundschule	. 50
Die Show l	beginnt	50
Versuch 1:	Bunte Schrift aus dem Nichts - "Was ist eigentlich Chemie?"	
Versuch 2:	Die Geisterhand	
Versuch 3:	Lutschtabletten verwandeln sich in ein Hundehäufchen	. 52
Versuch 4:	Der Kupfermacher	. 52
Versuch 5:	Der Silbermacher (die Silberspiegel-Probe)	. 53
Versuch 6:	Der sagenhafte Wasserschlucker	. 54
Versuch 7:	Farbenzauber – 5 Farben in einer Lösung	. 54
Versuch 8:	Blumen, die die Farbe wechseln	. 55
Versuch 9:	Chemischer Leuchtzauber	. 56
Versuch 10	: Das blaue Wunder	. 57
Versuch 11	: Die blaue Lava-Lampe	. 57
	uf die nachfolgenden Projektions-Experimente	
	: Kalkmuster in der Petrischale	
	: Der rote Riese in der Petrischale	
	: Big Bang in der Petrischale	
	: Frühling in der Petrischale	
	: Herbst in der Petrischale	
	: Blaue Knospe auf Glycerin in der Petrischale	
	: Winter in der Petrischale	
	Materialliste - Bezugsquellen	
10. Literaturvei	rzeichnis	. სგ

Vorwort

Chemie an der Grundschule, das ist ein Experiment mit Pioniercharakter. Das Fach Chemie wird offiziell nur an weiterführenden Schulen unterrichtet, aber dort lässt man Schüler auch bis zur 8. oder 9. Klasse warten, bis ihr Bild von den Naturwissenschaften durch die systematische Beschäftigung mit Stoffen und Stoffänderungen erweitert und abgerundet wird. Lehrer mit dem Hauptfach Chemie mussten sich schon immer damit abfinden, in der schulischen Hierarchie der Naturwissenschaften an letzter Stelle zu stehen. Sie haben es mit Fassung ertragen!

Was ist eigentlich Chemie? Diese Frage bleibt für Schüler der Primarstufe und der Sekundarstufe I bis zum Ende ihres Ausbildungsabschnittes offen, und in der Sekundarstufe II wird sie spät beantwortet. Die nette Formel "Chemie ist, wenn es stinkt und kracht", hält sich hartnäckig, aber eigentlich stellt sie der Schule kein gutes Zeugnis aus. Der späte Beginn der Chemie an Schulen hat meines Erachtens damit zu tun, dass man dieses Fach traditionell als ein schwer zu verstehendes einstuft und das erforderliche Abstraktionsvermögen erst älteren Schülern zutraut. Ich habe im Laufe meines beruflichen Lebens versucht, gegen diese falsche Einschätzung der Chemie an Schulen und ihr schlechtes öffentliches Ansehen anzukämpfen. Meine provokative These, dass die Chemie nur deshalb als schwer gilt, weil sie an Schulen falsch gelehrt wird [1, 2], hat mir keine neuen Follower aus Chemiedidaktiker-Kreisen beschert. Der propädeutische naturwissenschaftliche Unterricht setzt zwar inzwischen in den Sekundarstufen früh ein, schafft es aber nicht, das Profil des Faches Chemie für den Schüler zu schärfen. Da geht es um allgemeine Inhalte aus dem Sachunterricht oder aus Natur und Technik, die sich überwiegend der Physik zuordnen lassen. Biologie tritt auch in das Schülerbewusstsein ein, denn Pflanzen, Tiere und Menschen, ja das Leben überhaupt, sind relevante Themen in den Lehrplänen dieser Alterstufe. In der Physik geht es um Licht, Strom, Kräfte und die Sterne und Biologie beschäftigt sich mit dem Leben, das bleibt hängen. Aber wo bleibt die Chemie? Da wird zwar ausgiebig über Verbrennungsvorgänge gesprochen. Dass sich dahinter chemische Vorgänge verbergen, wird nicht wirklich deutlich. Ich will keine Neiddiskussion führen, sondern nur darauf hinweisen, dass es ohne chemische Inhalte im vornaturwissenschaftlichen Unterricht nicht geht, auch wenn sie als solche nicht bewusst werden. Ich fände es gut, wenn sie dem Schüler eine grobe Vorstellung davon vermittelten, worum es in der Chemie geht.

In den Lehrplänen der Grundschule kommt das Wort "Chemie" eigentlich nicht vor. Ich empfand es als Gymnasiallehrer für Chemie schon immer als Verpflichtung, das chemische Standbein der Kollegen aus Haupt- bzw. Mittelschulen im Rahmen der Lehrerfortbildung zu stärken. Ich verstehe bis heute nicht, wie man einerseits Chemieunterricht an weiterführenden Schulen auf dramatische Weise überreglementieren konnte, während man bei Haupt-schullehrern alle Regeln einer fundierten fachlichen Ausbildung außer Acht lässt. Es lebe der risikofreudige Autodidakt! Dass wir jetzt eine Stufe tiefer greifen, verdanke ich der zufälligen Begegnung mit der mutigen Leiterin des Referats Grundschulen an der bayerischen Akademie für Leherfortbildung in Dillingen. So beginnt auch für mich ein reizvolles Experiment, das die Türen für die Chemie auch in der Primarstufe öffnen soll, kindgemäß, effektvoll, spannend, nachhaltig und extrem experimentierlastig. Der in diesem Buch vorgestellte Lehrgang orientiert sich zwar am bayerischen Lehrplan, er will aber auch Lehrer außerhalb Bayerns erreichen. Er ist quasi grenzenlos und versteht sich als ein Angebot für Grundschullehrer in allen Bundesländern, denn die Inhalte sind Gott sei Dank nicht von exklusiv bayerischer Provinienz.

Roland Full

Hösbach im November 2021