Science & Technology Education Library

PHILOSOPHY, SCIENCE, EDUCATION AND CULTURE

Robert Nola and Gürol Irzik

AHTI-VEIKKO PIETARINEN

SIGNS OF LOGIC

Peircean Themes on the Philosophy of Language, Games, and Communication

PHILOSOPHY, SCIENCE, EDUCATION AND CULTURE

Science & Technology Education Library

VOLUME 28

SERIES EDITOR

William W. Cobern, Western Michigan University, Kalamazoo, USA

FOUNDING EDITOR

Ken Tobin, City University of New York, N.Y., USA

EDITORIAL BOARD

Henry Brown-Acquay, University College of Education of Winneba, Ghana Mariona Espinet, Universitat Autonoma de Barcelona, Spain Gürol Irzik, Boğaziçi University, Istanbul, Turkey Olugbemiro Jegede, The National Open University of Nigeria, Nigeria Lilia Reyes Herrera, Universidad Pedagógica Nacional de Bogota, Bogota, Colombia Marrisa Rollnick, College of Science, Johannesburg, South Africa Svein Sjøberg, University of Oslo, Norway Hsiao-lin Tuan, National Changhua University of Education, Taiwan

SCOPE

The book series *Science & Technology Education Library* provides a publication forum for scholarship in science and technology education. It aims to publish innovative books which are at the forefront of the field. Monographs as well as collections of papers will be published.

The titles published in this series are listed at the end of this volume.

Philosophy, Science, Education and Culture

by

ROBERT NOLA The University of Auckland, New Zealand

and

GÜROL IRZIK Boğaziçi University, Istanbul, Turkey

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 1-4020-3769-4 (HB) ISBN-13 978-1-4020-3769-6 (HB) ISBN-10 1-4020-3770-8 (e-book) ISBN-13 978-1-4020-3770-6 (e-book)

> Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

> > www.springeronline.com

Printed on acid-free paper

All Rights Reserved © 2005 Springer

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

Dedication

To Jan and Sibel

Acknowledgements		xiii
INTRODUC	ΓΙΟΝ	
1	The Themes of this Book	1
2	The Aim of Education is Critical Inquiry	4
PART I:	EPISTEMOLOGY AND EDUCATION	
	SYNOPSIS OF PART I	19
CHAPTER 1	: BELIEF, LEARNING AND EDUCATION	23
1.1	Beliefs and Language as (Nearly) Uniquely Human	24
1.2	What is Belief?	27
1.3	Learning and Its Independence from Critical Inquiry	30
1.4	A Minimal Working Definition of Learning That	34
1.5	Some Connections between Learning and Critical	
	Inquiry	39
1.6	Education and its Relation to Critical Inquiry	46
CHAPTER 2	: KNOWLEDGE, EDUCATION AND CRITICAL	
	INQUIRY	51
2.1	The Various Contexts of the Word 'Know'	53
2.2	Belief Again	58
2.3	Truth	63
2.4	The Definition of Knows That	66
2.5	Knowing Why: Explanation and Understanding	77
2.6	Learning, Teaching, Knowledge and Critical Inquiry	85
2.7	Misconceptions About Knowledge in Science	86
	Education	
CHAPTER 3	: PLATO ON KNOWLEDGE, AND A SOCRATIC	
	MODEL OF INQUIRY	91
3.1	A Model of Socratic Inquiry	92
3.2	Knowledge as "Tethered" True Belief	98
3.3	Learning and Plato's Socratic Model of Critical	102
	Inquiry	

CHAPTER 4:	SOME PROBLEMS FOR THEORIES OF	
	KNOWLEDGE AND THEIR RESOLUTION	111
4.1	The Problem of the Regress of Reasons	112
4.2	Dogmatism and Scepticism	115
4.3	Relativism	118
4.4	Classical Foundations for Knowledge	127
4.5	Coherence Theories of Knowledge	141
4.6	Theories of Rational Degrees of Belief Rather than	
	Knowledge	145
CHAPTER 5:	VARIETIES OF CONSTRUCTIVISM AND THE	
	INACCESSIBILITY OF REALITY ARGUMENT	149
5.1	Four Varieties of Constructivism	151
5.2	Constructivists in Science Education Say: 'We Never	
	See Tables!' – 'Don't We Ever?'	158
5.3	Piaget and Von Glasersfeld as Advocates of IRA	161
5.4	Philosophers on IRA	164
5.5	Two Versions of IRA and Some Consequences	167
5.6	Setting Out the IRA Argument and its Impossibility	
	Claim	171
5.7	Constructivist Pedagogy	175
PART II: PHI	LOSOPHY OF SCIENCE, METHODOLOGY AND	
	SCIENCE EDUCATION	
	SYNOPSIS OF PART II	183
CHAPTER 6:	THE AIMS OF SCIENCE AND CRITICAL INQUIRY	185
6.1	Aims of Science, or Scientists?	185
6.2	Extrinsic Aims of Science	188
6.3	Intrinsic Aims of Science	190
6.1	Values Dulas and Mathadalagiaal Dringinlas	105

0.5		170
6.4	Values, Rules and Methodological Principles	195
6.5	Hypothesis, Law, Theory and Model	199
6.6	A Working Definition of Science	201

viii

CHAPTER 7:	NAÏVE INDUCTIVISM AS A METHODOLOGY IN	
	SCIENCE	207
7.1	Methods for What?	207
7.2	What is Inductivism?	211
7.3	Naïve Inductivism as a Methodology	217
7.4	Boyle's Law and Naïve Induction	220
7.5	The Study of Cot Death and Naïve Inductivism	223
7.6	The Discovery of the Ozone Hole	225
CHAPTER 8:	HYPOTHETICO-DEDUCTIVISM AS A	
	METHODOLOGY IN SCIENCE	231
8.1	Huygens on the Hypothetico-Deductive Method	232
8.2	A Simple Hypothetico-Deductive Schema	233
8.3	A More Sophisticated Hypothetico-Deductive Schema	238
8.4	The Hypothetico-Deductive Method and Testing	241
8.5	Kinds of Hypothetico-Deductive Test	245
8.6	The Hypothetico-Deductive Method and Popper's	
	Philosophy of Science	247
8.7	Applying Hypothetico-Deductive Method in the	
	Classroom	253
CHAPTER 9:	BAYESIAN METHODOLOGY IN SCIENCE	259
9.1	The Probability Calculus	261
9.2	Bayes' Theorem in its Various Forms	267
9.3	Bayesian Conditionalization: What Is It?	272
9.4	Applications of Bayes' Theorem	274
9.5	Problems for Bayesianism and Their Resolution	278
9.6	Implications for Science Education	281
CHAPTER 10	: SCIENTIFIC REALISM AND MODELLING	
	REALITY	285
10.1	Scientific Realism	286
10.2	Galileo and the Subversion of Experience by Reason	295
10.3	Galilean Methodology and Idealization	299
10.4	Abstraction and Idealization	302
10.5	Idealized Laws	307
10.6	Theories, Models, Reality and Test	312
10.7	Some Consequences for Science Education	315

PART III: THE POSTMODERNIST IMPASSE

SYNOPSIS OF PART III 321

CHAPTER 11	: SOCIOLOGY VERSUS RATIONALITY IN	
	SCIENCE	325
11.1	Rational Explanation of Scientific Belief	327
11.2	Sociological Explanation of Scientific Belief	329
11.3	Further Tenets of the Strong Programme	337
114	Does Evidence Have Nothing To Do With Scientific	
	Belief?	340
11.5	Foucault on Power and Knowledge	341
11.6	The Strong Programme and Realism	351
11.0	The Strong Programme and Realism	501
CHAPTER 12	2: LYOTARD, POSTMODERNISM AND	
-	EDUCATION	355
12.1	The Narrative/Science Distinction	356
12.2	Lyotard on the Nature of Science	358
12.3	Lyotard on Knowledge	362
12.6	Epistemically Legitimating the Game of Science	364
12.1	Language Games and Legitimation	368
12.5	The Socio-Political Legitimation of Science	373
12.0	Paralogy to the Rescue?	376
12.7	I dialogy to the Rescue?	270
12.0	Lyotatu and his followers on Education	5/9
PART IV [.] SC	IENCE EDUCATION CULTURE AND POLITICS	
	SYNOPSIS OF PART IV	391

CHAPTER	13: MULTICULTURALISM AND SCIENCE	
	EDUCATION	393
13.1	Multiculturalism as a Politics of Recognition	395
13.2	An Alternative Approach to Multiculturalism	403
13.3	Epistemic Multiculturalism	404
13.4	A Multiculturalist Attempt to Define Science	409
13.5	Indigenous and Traditional Ecological Knowledge:	412
	Inclusion or Exclusion?	
13.6	Four Responses to the Inclusion Problem	417
13.7	Universalism in Science	427
13.8	Science and Values	435
13.9	Multiculturalism, Science Education and Critical	437
	Inquiry	

х

xi

CHAPTER 1	4: POLITICS OF SCIENCE AND SCIENCE	4 4 1
14.1	EDUCATION Is Universalism Repressive? Are Postmodernism and	441
	Epistemic Multiculturalism Emancipatory?	443
14.2	Case Study 1: India	446
14.3	Case Study 2: Turkey	448
14.4	Between Science and Politics	456
EPILOGU	JE	461
References		465
Name Index		479
Subject Index		483

ACKNOWLEDGEMENTS

The idea for this book was suggested by Bill Cobern. We would like to thank him for his encouragement and support. A number of people assisted in the preparation of this book: Jan Crosthwaite, Melis Erdur, Buket Korkut, Dean Furbish, Michael Matthews. We thank them all. We also wish to acknowledge the comments made by two anonymous referees of an earlier version of this book which helped considerably in its improvement for its intended audience.

Gurol Irzik gratefully acknowledges the partial support of the Turkish Academy of Sciences and Bogazici University Research Fund. Robert Nola acknowledges partial support through a Marsden Fund grant.

The book draws on previous papers the authors have published. We wish to thank the following publishers for permission to reproduce this material here. However much of it has been reworked for the context of the book and it does not appear as it was in its original form.

With permission from *Elsevier*:

- Nola, R. And Irzik, G.(2003), Incredulity Toward Lyotard: A Critique of a Postmodernist Account of Science and Knowledge', *Studies in History and Philosophy of Science* **34A #2**, 391-421.
- With permission from Kluwer Academic Publishers:
 - Nola, R. (2004) 'Pendula, Models, Constructivism and Reality', *Science & Education*, **13**, 349-77.
 - Nola, R. (2003) 'Naked Before Reality, Skinless Before the Absolute: A Critique of the Inaccessibility of Reality Argument in Constructivism', *Science & Education* 12 #2, 131-166.
 - Irzik G. and Irzik, S. (2002) 'Which Multiculturalism?' Science & Education 11 #4, 393-403.
 - Nola, R. (1997) 'Constructivism in Science and in Science Education: A Philosophical Critique', *Science & Education* **6**, 55-83.
 - Irzik, G. (1998) 'Philosophy of Science and Radical Intellectual Islam in Turkey", in William Cobern (ed.) Cross-Cultural Perspectives on Science Education, Kluwer Academic Publishers, Dordrecht, pp. 163-180.

INTRODUCTON

1 THE THEMES OF THIS BOOK

In the last two decades various forms of constructivism, multiculturalism and postmodernism, have dominated the literature of both education in general and science education in particular. As a result of this influence, a number of theoreticians of education and science educators gave up the ideals of universalism, transcultural rationality, scientific method, objective truth and knowledge; instead they adopted localist, relativist, and anti-realist perspectives in science as well as in philosophy. Above all, in doing so, they abandoned the ideal of critical inquiry, despite the intentions of many to the contrary.

In this book we argue that the influence of these fashionable currents of thought were largely negative in many respects. First, they portrayed a wrong image of science by conflating the internal content of science (laws, theories, data and the like) with external factors impinging upon science such as its institutional arrangements, its funding, its technological applications, etc. Science is then easily depicted as an activity not guided by well-established, transculturally applicable norms of rationality and method, but by subjective constructions, local concerns, social factors, and power relations. The role of reality as a check over beliefs is constantly downplayed; that science can give us objective truth about a mind-independent world is often denied in favour of either an idealist or a phenomenalist or a sceptical position.

Second, and following from the above, local belief systems and cultural practices are celebrated uncritically as "knowledge" to be respected. It is claimed that there are as many sciences as there are cultures, that science is just a narrative, a language game that is on a par with other language games such as fables and gossip. Difference, incommensurability, dissensus, and paralogy are all embraced and encouraged without giving much thought to their implications.

Third, the three fashions of thought – constructivism, postmodernism, and epistemic multiculturalism – adopt very poor and discredited epistemologies, often under the guise of a revolutionary or novel approach. We are thus told that not only the claims we make about what we know but also the very definition of knowledge itself, are either social constructions or individual constructions out of experiences. It is denied that there is something in the real world in virtue of which our beliefs are made true. It is boldly argued that we cannot compare reality with our beliefs about it because we have no independent access to any such reality. Hence, it is claimed, we cannot know reality as it is, but only know our experiences or what we construct out of our

PHILOSOPHY, SCIENCE, EDUCATION & CULTURE

2

experiences. That this traps us in a "world of experiences" cut off from the real world does not seem to bother their advocates.

Finally, after all these views are adopted in various combinations and forms, they are applied to teaching and learning of science. Educators with radical constructivist leanings, for example, invite pupils to construct their own concepts and theories about nature, and then to "negotiate" them with other pupils and teachers. Radical constructivists do not attempt to make their students see that they are wrong when they go astray, since, after all, there is no objective knowledge and truth to be acquired, but only "viable constructs". Of course, in this way, the difference between a right answer and a wrong one disappears – but what reason is there to bother about truth and falsity?

Epistemic multiculturalist teachers encourage their pupils to regard their cultural or indigenous belief systems as being on a par with science, without worrying at all about the discrepancies between them and scientific theories. On the contrary, this is celebrated as "border crossing" rather than seen as a source of anxiety that can cause confusion in students. To alleviate the anxiety, some epistemic multiculturalists resort to an effective strategy: tell students, or if that is too didacticist give them the impression, that all belief systems are equally valid. After all, what matters is not truth, but whether belief systems serve the social purposes of cultures embodying them!

As for postmodernist teachers, they preach that students and non-students alike ought to follow Lyotard and advocate incredulity towards all metanarratives, including those that attempt to justify scientific beliefs and methods. Furthermore, established canons – in science as well as in literature and philosophy – should be given no privileged place in education because they often disguise hegemonic and Eurocentric ideas and ideals as universal, and serve nothing but the *status quo*. On the contrary, it is said that since the ultimate aim of education is empowerment, all claims to universality and all searches for a rational consensus should be undermined by paralogical activity and criticized in the name of an allegedly emancipatory and more democratic politics.

The main purpose of this book is to show that none of these views stand critical scrutiny and they are not to be taken seriously. This is not, however, a merely critical book. We have also taken pains to construct a positive account of education and draw its implications for teaching science. This begins in the next section by arguing that critical inquiry is the core aim of education. Parts I and II spell out the philosophical underpinnings of this view. Part I sets out our philosophical position about the nature of knowledge (that is, epistemology) and its relation to education. Although radical constructivism is presented as a novel epistemology, we place it in the context of a number of rival theories of knowledge and critically evaluate it