

Radiative Decay Engineering

Joseph R. Lakowicz Chris D. Geddes

Vol — Topics in — **B** Fluorescence Spectroscopy

Radiative Decay Engineering

Joseph R. Lakowicz Chris D. Geddes

Topics in Fluorescence Spectroscopy

Volume 8 Radiative Decay Engineering

Topics in Fluorescence Spectroscopy

Edited by JOSEPH R. LAKOWICZ and CHRIS D. GEDDES

Volume 1: Techniques

Volume 2: Principles

Volume 3: Biochemical Applications

Volume 4: Probe Design and Chemical Sensing

Volume 5: Nonlinear and Two-Photon-Induced Fluorescence

Volume 6: Protein Fluorescence

Volume 7: DNA Technology

Volume 8: Radiative Decay Engineering

Topics in Fluorescence Spectroscopy

Volume 8 Radiative Decay Engineering

Edited by

CHRIS D. GEDDES

The Institute of Fluorescence Medical Biotechnology Center University of Maryland Biotechnology Institute Baltimore, Maryland

and

JOSEPH R. LAKOWICZ

Center for Fluorescence Spectroscopy and Department of Biochemistry and Molecular Biology University of Maryland School of Medicine Baltimore, Maryland

The Library of Congress cataloged the first volume of this title as follows:

Topics in fluorescence spectroscopy/edited by Joseph R. Lakowicz.	
 p. cm. Includes bibliographical references and index. Contents: v. 1. Techniques 1. Fluorescence spectroscopy. I. Lakowicz, Joseph R. 	
QD96.F56T66 1991 543'.0858—dc20	91-32671 CIP

Front cover—Surface Plasmon Coupled Emission (SPCE). See Journal of Fluorescence 14(1), 119–123, 2004, and chapter within

ISSN: 1574-1036 ISBN 0-387-22662-1 (HB)

Printed on acid-free paper

©2005 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America

9 8 7 6 5 4 3 2 1 SPIN 11306818

springeronline.com

Contributors

Ricardo F. Aroca • Materials & Surface Science Group, Department of Chemistry and Biochemistry, University of Windsor, N9B 3P4, Windsor, Ontario, Canada

Kadir Aslan • Institute of Fluorescence, University of Maryland Biotechnology Institute 725 West Lombard Street, Baltimore, Maryland 21201

Donna Chen • Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208

Ashutosh Chilkoti • Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708

Paula E. Colavita • Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208

Michael Doescher • Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208

Eric Dulkeith • Photonics and Optoelectronics Group, Physics Department and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 München, Germany

Robert C. Dunn • Department of Chemistry, University of Kansas, Lawrence, Kansas, 66045

Jochen Feldmann • Photonics and Optoelectronics Group, Physics Department and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 München, Germany

Chris D. Geddes • Institute of Fluorescence, University of Maryland Biotechnology Institute, and Center for Fluorescence Spectroscopy, 725 West Lombard Street, Baltimore, Maryland 21201

Joel I. Gersten • Department of Physics, City College of the City University of New York, New York, New York 10031

Paul J.G. Goulet • Materials & Surface Science Group, Department of Chemistry and Biochemistry, University of Windsor, N9B 3P4, Windsor, Ontario, Canada

Ignacy Gryczynski • Center for Fluorescence Spectroscopy, University of Maryland, School of Medicine, 725 West Lombard Street, Baltimore, Maryland 21201

Zygmunt Gryczynski • Center for Fluorescence Spectroscopy, University of Maryland, School of Medicine, 725 West Lombard Street, Baltimore, Maryland 21201

Amanda J. Haes • Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, Illinois 60208-3113

Christy L. Haynes • Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, Illinois 60208-3113

Arnim Henglein • Hahn-Meitner Institut, 14109 Berlin, Germany

Thomas A. Klar • Photonics and Optoelectronics Group, Physics Department and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 München, Germany

Wolfgang Knoll • Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

Joseph R. Lakowicz • Center for Fluorescence Spectroscopy, University of Maryland, School of Medicine, 725 West Lombard Street, Baltimore, Maryland 21201

Luis M. Liz-Marzán • Departamento de Química Física, Universidade de Vigo, 36200, Vigo, Spain

Joanna Malicka • Center for Fluorescence Spectroscopy, University of Maryland, School of Medicine, 725 West Lombard Street, Baltimore, Maryland 21201

C. Mayer • Analytical Biotechnology, Technical University of Delft, Julianalaan 67, 2628 BC Delft, The Netherlands

Adam D. McFarland • Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, Illinois 60208-3113

Paul Miney • Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208

Annabelle Molliet • Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208

David S. Moore-Nichols • Department of Chemistry, University of Kansas, Lawrence, Kansas, 66045

Michael L. Myrick • Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208

Nidhi Nath • Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708

Thomas Neumann • Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

Contributors

Lifang Niu • Departments of Chemistry and of Materials Science, National University of Singapore, 10 Science Drive 4, Singapore 11754

Steven J. Oldenburg • Seashell Technology, La Jolla, California 92037

Isabel Pastoriza-Santos • Departamento de Química Física, Universidade de Vigo, 36200, Vigo, Spain

Darren Pearson • Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208

Jorge Pérez-Juste • Departamento de Química Física, Universidade de Vigo, 36200, Vigo, Spain

John Reddic • Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208

Th. Schalkhammer • Nanobioengineering, Vienna Biocenter, Universität Wien Dr. Bohrgasse 9, 1030 Wien, Austria. Current address: Schalkhammer KG, Klausenstrasse 129, 2534 Alland, Austria

David A. Schultz • David A. Schultz, University of California, San Diego, La Jolla, California 92093-0319

Evelyne L. Schmid • Departments of Chemistry and of Materials Science, National University of Singapore, 10 Science Drive 4, Singapore 11754

Lindsay Taylor • Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208

Richard P. Van Duyne • Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, Illinois 60208-3113

Fang Yu • Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

Jing Zhou • Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208

Preface

Spatial control of photonic mode density is changing the practice of fluorescence spectroscopy. This laboratory has been active in fluorescence spectroscopy for nearly 30 years. During that time we have investigated many phenomena in fluorescence, including quenching, energy transfer and anisotropy, to name a few. Until recently we relied completely on the free-space emission properties of fluorophores observed in transparent media. The free-space quantities in fluorescence are determined by the values of the radiative and non-radiative properties of excited fluorophores. The observed changes in fluorescence intensities, lifetimes, etc. are due almost completely to changes in the nonradiative decay rates such as quenching. The rate of radiative decay is determined by the extinction coefficient or oscillator strength of the transition. This rate is essentially constant in most media.

In about 2000 we began to examine the effects of silver metallic particles on fluorescence. Examination of the literature revealed that proximity to silver particles could have dramatic effects on fluorescence quantum yields and lifetimes. Such changes are typically due to changes in the non-radiative decay rates. In contrast, the metal particles changed the radiative decay rate (Γ). These changes occur due to modifications of the photonic mode density (PMD) near the particle in Γ . This was the first time in 30 years that we saw an opportunity to modify this fundamental rate. Numerous opportunities became apparent as we considered the effects of PMD, including increased quantum yields, increased photostability and changes in resonance energy transfer. Additionally, we saw the opportunity to obtain directional rather than isotropic emission based on local changes in the PMD. We described these phenomena as radiative decay engineering (RDE) because we could engineer changes in the emission based on the fluorophore-metal particle geometries.

During these three years our enthusiasm for RDE has continually increased. Many of the early predictions have been confirmed experimentally. As one example we recently observed directional emission based on fluorophores located near a thin metal film, a phenomenon we call surface plasmon coupled emission (SPCE). We see numerous applications for RDE in biotechnology, clinical assays and analytical chemistry. The technology needed to implement RDE is straightforward and easily adapted by most laboratories. The procedures for making noble metal particles and surfaces are simple and inexpensive. The surface chemistry is well developed, and the noble metals are easily tolerated by biochemistry systems. While implementation of RDE is relatively simple, understanding the principles of RDE is difficult. The concepts are widely distributed in the optics and chemical physics literature, often described in terms difficult to understand by biophysical scientists. In this volume we have presented chapters from the experts who have studied metal particle optics and fluorophore-metal interactions. We believe this collection describes the fundamental principles for the widespread use of radiative decay engineering in the biological sciences and nanotechnology.

Joseph R. Lakowicz and Chris D. Geddes Center for Fluorescence Spectroscopy Baltimore, Maryland August 13, 2003

Contents

1. Preparation of Noble Metal Colloids and Selected Structures Isabel Pastoriza-Santos, Jorge Pérez-Juste and Luis M. Liz-Marzán

1.	Introductio)n	1
2.	Preparation	n of Noble Metal Colloids	2
	2.1. Spheri	ical Nanoparticles in Water	2
	2.1.1.	Citrate Reduction	2
	2.1.2.	Borohydride Reduction	3
	2.1.3.	γ-Radiolysis	4
	2.1.4.	Growth on Preformed Nanoparticles	5
	2.1.5.	Growth of Silica Shells on Metal Nanoparticles	5
	2.2. Spheri	ical Nanoparticles in Organic Solvents.	6
	2.2.1.	Two-Phase Reduction	6
	2.2.2.	Reduction by the Solvent	6
	2.2.3.	Reduction within Microemulsions	7
	2.3. Nanor	ods and Nanoprisms in Water	8
	2.3.1.	Synthesis of Nanorods within Porous Membranes	8
	2.3.2.	Nanorods from Wet Synthesis in Solution	8
	2.3.3.	Synthesis of Nanoprisms in Water	10
	2.4. Nanor	ods and Nanoprisms in Organic Solvents	11
	2.4.1.	Reduction within Microemulsions	11
	2.4.2.	Reduction by the Solvent	11
	2.4.3.	Shape Control Using DMF	11
3.	Metal Coll	oid Structures through Layer-by-Layer Assembly	13
	3.1. Layer-	by-Layer Assembly	13
	3.2. Assem	ibly of Au@SiO ₂	13
	3.3. Assem	bly of Au Nanoprisms	15
4.	Conclusion	18	17
5.	Acknowled	Igements	17
6.	References		17

2. Near-Field Scanning Optical Microscopy: Alternative Modes of Use for NSOM Probes David S. Moore-Nichols and Robert C. Dunn

1. Int	troduction	25
2. Sc	canning Near-Field Fret Microscopy	27
3. Na	anometric Biosensors and Bioprobes	31
4. Ap	pplied Voltage Combined with NSOM for Structure/Dynamic Measurements	34

Contents

5. 6	Interferometric NSOM Measurements	36
0.	Tapping-Mode NSOM	40
7.	Conclusions	43
8.	Acknowledgments	44
9.	References	44

3. Nanoparticles with Tunable Localized Surface Plasmon Resonances: Topics in Fluorescence Spectroscopy Christy L. Haynes, Amanda J. Haes, Adam D. McFarland, and

Distand D	V	
Richard P.	van Duvne	
	· ···· ··· ··· ··· ··· ··· ··· ··· ···	

1.	Introduction	47
	1.1. General Overview	47
	1.2. Fabrication of Nanostructures with Tunable Optical Properties	48
	1.3. Fundamental Studies of Tunable Optical Properties	52
	1.3.1. Defining the Fundamental Characteristics of the Localized	
	Surface Plasmon Resonance	52
	1.3.2. Controlling the Localized Surface Plasmon Resonance	53
	1.3.3. Implications for Related Phenomena	55
	1.4. Applications of Tunable Optical Properties	57
	1.5. Goals and Organizations	59
2.	Tunable Localized Surface Plasmon Resonance	59
	2.1. Introduction to Colloidal Nanoparticles	59
	2.2. Colloidal Nanoparticle Experimental Section	60
	2.2.1. Fabrication of Surfactant-Modified Silver Nanoparticles	60
	2.2.2. Fabrication of Core-Shell Nanoparticles	60
	2.2.3. Transmission Electron Microscopy Characterization	61
	2.3. Structural and Optical Properties of Colloidal Nanoparticles	61
	2.4. Study of Electromagnetic Coupling Using Electron Beam	
	Lithography Substrates	64
	2.5. Experimental Methods	66
	2.5.1. Sample Fabrication	66
	2.5.2. Optical Characterization of Nanoparticle Arrays	67
	2.5.3. Structural Characterization of Nanoparticle Arrays	68
	2.6. Optical Properties of Electron Beam Lithography-Fabricated	
	Nanoparticle Arrays	69
	2.7. Tunable Localized Surface Plasmon Resonance Using	
	Nanosphere Lithography	70
	2.7.1. Effect of Nanoparticle Material on the LSPR	70
	2.7.2. Effect of Nanoparticle size on the Ag LSPR	70
	2.7.3. Effect of Nanoparticle Shape on the Ag LSPR	71
	2.7.4. Effect of the External Dielectric Medium on the Ag LSPR	73
	2.7.5. Effect of Thin Film Dielectric Overlayers on the LSPR	74
	2.7.6. Effect of the Substrate Dielectric Constant on the LSPR	75

xii

Contents

3.	Recent Applications of the Tunable Localized Surface Plasmon Resonance	75
	3.1. Sensing with Nanoparticle Arrays	75
	3.1.1. Experimental Procedure	76
	3.1.2. Effect of the Alkanethiol Chain Length on the LSPR	76
	3.1.3. Streptavidin Sensing Using LSPR Spectroscopy	78
	3.1.4. Anti-Biotin Sensing Using LSPR Spectroscopy	80
	3.1.5. Monitoring the Specific Binding of Streptavidin to Biotin and	
	Anti-Biotin to Biotin and the LSPR Response as a Function	
	of Analyte Concentration	80
	3.2. Sensing with Single Nanoparticles	82
	3.2.1. Experimental Procedure	84
	3.2.2. Single Nanoparticle Refractive Index Sensitivity	84
	3.2.3. Single Nanoparticle Response to Adsorbates	85
	3.3. Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy	86
	3.3.1. Experimental Procedure	87
	3.3.2. Varying the Excitation Wavelength in PS-SERES	89
	3.3.3. Varying the Molecular Adsorbate in PS-SERES	89
4.	Conclusions	92
5.	Acknowledgements	93
6.	References	93

4. Colloid Surface Chemistry Arnim Henglein

1.	Introduction	101
2.	Radiolytic Methods	101
3.	Silver Colloid Preparation	103
4.	Pulsed Particle Formation	105
5.	Redox Potential and Particle Size	106
6.	Polymer Stabilized Clusters	109
7.	Electron Donation and Positive Hole Injection	109
8.	Photoelectron Emission	111
9.	Nano-Electrochemistry	114
10.	Bimetallic Particles	115
11.	Fermi Level Equilibration in Mixed Colloids	122
12.	Adsorption of Electrophiles	124
13.	Adsorption of Nucleophiles	126
14.	Competitive Adsorption and Displacement Processes	130
15.	Final Remarks	131
16.	References	131

xiii

5.	Bioanalytical Sensing Using Noble Meal Colloids C. Mayer and Th. Schalkhammer	
1.	Bio-Nanotechnology	. 135
	1.1. Metal Colloids	. 136
	1.2. Metal Colloid Devices	. 140
2.	Nano-Cluster Based Technology	. 141
	2.1. Properties	. 141
	2.2. Metal Colloids and Quantum Dots	. 144
	2.2.1. Techniques to Prepare Noble Metal Colloids	. 145
	2.3. Nano-Switches	. 151
	2.4. Cluster-Cluster Aggregates	. 154
	2.5. Coating Clusters with Biomolecules	. 156
	2.6. AFM	. 158
	2.7. Immune Colloidal Techniques	. 161
	2.8. Binding and Assembly of Functionalized Colloids	. 161
	2.9. Bio-Templating	. 163
	2.10. Colloidal Particles and Electrodes	. 165
	2.11. SPR-Transduction	. 165
	2.12. Electroluminescence	. 166
3.	Nano-Cluster and Field Effects	. 166
	3.1. Surface Enhanced Optical Absorption (SEA)	. 166
	3.1.1. Physical Principles	. 166
	3.1.2. Applications	168
	3.1.3. Distance Layer and Colloid Layers	169
	3.1.4. SEA-Biochips	. 171
	3.1.4.a. The SEA Chip	. 171
	3.1.4.b. Applications and General Requirements	. 171
	3.1.4.c. Setup	. 172
	3.1.4.d. Example and Results	175
	3.1.5. Nano-Distance Transduction via SEA Biochips	176
	3.1.5.a. How It Works	176
	3.1.5.b. Polyvinylpyrrolidone as Distance Layer	177
	3.1.5.c. Proteins as Distance Layer	177
	3.1.5.d. Spin-Coating of DNA	178
	3.1.5.e. Setup of a MICORIS Chip	179
	3.2. Resonance Enhanced Fluorescence (REF)	180
	3.2.1. Physical Principles	180
	3.2.2. Applications	182
	3.2.3. REF in Microtiter-Plates	184
	3.2.4. Cluster-Layer Enhanced Fluorescence DNA Chip Setup	184
	3.2.5. Clusters Layer Fabrication Methods	185
	3.3. Surface-Enhanced Infrared Absorption (SEIRA)	186
	3.4. Scattered Evanescent Waves (SEW)	187
	3.5. Surface-Enhanced Raman Scattering (SERS)	188
	3.6. Cluster-Quenched Fluorescence	190
	3.7. Cluster-Emission Devices (CED)	192
4.	Acknowledgements	193
5.	Keterences	193