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Preface 

Spatial control of photonic mode density is changing the practice of fluorescence 
spectroscopy. This laboratory has been active in fluorescence spectroscopy for nearly 30 
years. During that time we have investigated many phenomena in fluorescence, including 
quenching, energy transfer and anisotropy, to name a few. Until recently we relied 
completely on the free-space emission properties of fluorophores observed in transparent 
media. The free-space quantities in fluorescence are determined by the values of the 
radiative and non-radiative properties of excited fluorophores. The observed changes in 
fluorescence intensities, lifetimes, etc. are due almost completely to changes in the non-
radiative decay rates such as quenching. The rate of radiative decay is determined by the 
extinction coefficient or oscillator strength of the transition. This rate is essentially 
constant in most media. 

In about 2000 we began to examine the effects of silver metallic particles on 
fluorescence. Examination of the literature revealed that proximity to silver particles 
could have dramatic effects on fluorescence quantum yields and lifetimes. Such changes 
are typically due to changes in the non-radiative decay rates. In contrast, the metal 
particles changed the radiative decay rate (F). These changes occur due to modifications 
of the photonic mode density (PMD) near the particle in T. This was the first time in 30 
years that we saw an opportunity to modify this fundamental rate. Numerous 
opportunities became apparent as we considered the effects of PMD, including increased 
quantum yields, increased photostability and changes in resonance energy transfer. 
Additionally, we saw the opportunity to obtain directional rather than isotropic emission 
based on local changes in the PMD. We described these phenomena as radiative decay 
engineering (RDE) because we could engineer changes in the emission based on the 
fluorophore-metal particle geometries. 

During these three years our enthusiasm for RDE has continually increased. Many of 
the early predictions have been confirmed experimentally. As one example we recently 
observed directional emission based on fluorophores located near a thin metal film, a 
phenomenon we call surface plasmon coupled emission (SPCE). We see numerous 
applications for RDE in biotechnology, clinical assays and analytical chemistry. The 
technology needed to implement RDE is straightforward and easily adapted by most 
laboratories. The procedures for making noble metal particles and surfaces are simple and 
inexpensive. The surface chemistry is well developed, and the noble metals are easily 
tolerated by biochemistry systems. 



X Preface 

While implementation of RDE is relatively simple, understanding the principles of 
RDE is difficult. The concepts are widely distributed in the optics and chemical physics 
literature, often described in terms difficult to understand by biophysical scientists. In this 
volume we have presented chapters from the experts who have studied metal particle 
optics and fluorophore-metal interactions. We believe this collection describes the 
fiindamental principles for the widespread use of radiative decay engineering in the 
biological sciences and nanotechnology. 

Joseph R. Lakowicz and Chris D. Geddes 
Center for Fluorescence Spectroscopy 

Bahimore, Maryland 
August 13, 2003 
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