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PREFACE 

Real-time systems technology, traditionally developed for safety-critical systems, has 
recently been extended to support novel application domains, including multimedia 
systems, monitoring apparatuses, telecommunication networks, mobile robotics, vir- 
tual reality, and interactive computer games. Such systems are referred to as m f t  
real-time systems, because they are often characterized by a highly dynamic behavior 
and flexible timing requirements. In such systems, missing a deadline does not cause 
catastrophic consequences on the environment, but only a performance degradation, 
often evaluated through some quality of service parameter. 

Providing an appropriate support at the operating system level to such emerging ap- 
plications is not trivial. In fact, whereas general purpose operating systems are not 
predictable enough for guaranteeing the required performance, the classical hard real- 
time design paradigm, based on worst-case assumptions and static resource allocation, 
would be too inefficient in this context, causing a waste of the available resources and 
increasing the overall system cost. For this reason, new methodologies have been in- 
vestigated for achieving more flexibility in handling task sets with dynamic behavior, 
as well as higher efficiency in resource exploitation. 

This book illustrates the typical characteristics of soft real-time applications and presents 
some recent methodologies proposed in the literat~lre to support this kind of applica- 
tions. 

Chapter 1 introduces the basic terminology and concepts used in the book and clearly 
illustrates the main characteristics that distinguish soft real-time computing from other 
types of computation. 

Chapter 2 is devoted to overload management techniques, which are essential in dy- 
namic systems where the computational requirements are highly variable and cannot 
be predicted in advance. 

Chapter 3 introduces the concept of temporal protection, a mechanism for isolating the 
temporal behavior of a task to prevent reciprocal interference with the other system 
activities. 



. . . 
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Chapter 4 deals with the problem of executing several independent multi-thread appli- 
cations in the same machine, presenting some methodologies to partition the processor 
into several virtual slower processors, in such a way that each application can be inde- 
pendently guaranteed from each other. 

Chapter 5 presents a number of synchronization protocols for limiting blocking times 
when mutually exclusive resources are shared among hard and soft tasks. 

Chapter 6 describes resource reclaiming techniques, which enhance resource exploita- 
tion when the actual resource usage of a task is different than the amount allocated off 
line. These techniques basically provide a method for reassigning the unused resources 
to the most demanding tasks. 

Chapter 7 treats the issue of quality of service management. It is addressed through an 
adequate formulation that univocally maps subjective aspects (such as the perceived 
quality that may depend on the user) to objective values expressed by a real number. 

Chapter 8 presents some feedback-based approach to real-time scheduling, useful to 
adapt the behavior of a real-time system to the actual workload conditions, in highly 
dynamic environments. 

Chapter 9 addresses the problem of performing a probabilistic analysis of real-time 
task sets, with the aim of providing a relaxed form of guarantee for those real-time 
systems with highly variable execution behavior. The objective of the analysis is to 
derive for each task a probability to meet its deadline or, in general, to complete its 
execution within a given interval of time. 
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INTRODUCTION 

In this chapter we explain the reasons why soft real-time computing is being deeply in- 
vestigated d~lring the last years for supporting a set of applicationdomains for which the 
hard real-time approach is not suited. Examples of such application domains include 
multimedia systems, monitoring apparatuses, robotic systems, real-time graphics, in- 
teractive games, and virtual reality. 

To better understand the difference between classical hard real-time applications and 
soft real-time applications, we first introduce some basic terminology that will be used 
throughout the book, then we present the classical design approach used for hard real- 
time systems, and then describe the characteristics of some soft real-time application. 
Hence, we identify the major problems that a hard real-time approach can cause in these 
systems and finally we derives a set of feat~lres that a soft real-time system should have 
in order to provide efficient support for these kind of applications. 

1 .  BASIC TERMINOLOGY 

In the common sense, a real-time system is a system that reacts to an event within a 
limited amount of time. So, for example, in a web page reporting the state of a Formula 
1 race, we say that the race state is reported in real-time if the car positions are updated 
"as soon as" there is a change. In this particular case, the expression "as soon as" does 
not have a precise meaning and typically refers to intervals of a few seconds. 

When a computer is used to control a physical device (e.g., a mobile robot), the time 
needed by the processor to react to events in the environment may significantly affect 
the overall system's performance. In the example of a mobile robot system, a correct 
maneuver performed too late could cause serious problems to the system and/or the 



environment. For instance, if the robot is running at a certain speed and an obstacle 
is detected along the robot path, the action of pressing the brakes or changing the 
robot trajectory should be performed within a maximum delay (which depends on the 
obstacle distance and on the robot speed), otherwise the robot could not be able to 
avoid the obstacle, thus incurring in a crash. 

Keeping the previous example in mind, a real-time system can be more precisely 
defined as a computing system in which computational activities must be performed 
within predefined timing constraints. Hence, the performance of a real-time system 
depends not only on the functional correctness of the results of computations, but also 
on the time at which such results are produced. 

The word real indicates that the system time (that is, the time represented inside the 
computing system) should always be synchronized with the external time reference 
with which all time intervals in the environment are measured. 

1.1.1 TIMING PARAMETERS 

A real-time system is usually modeled as a set of concurrent tasks. Each task represents 
a computational activity that needs to be performed according to a set of constraints. 
The most significant timing parameters that are typically defined on a real-time com- 
putational activity are listed below. 

Release time 7 ,: is the time at which a task becomes ready for execution; it is 
also referred to as a r r i ~ d  time and denoted by a ,; 

Start time s,: is the time at which a task starts its execution for the first time; 

Computation time C, : is the time necessary to the processor for executing the 
task without interruption; 

Finishing time f , :  is the time at which a task finishes its execution; 

Response time R , :  is the time elapsed from the task release time and its finishing 
time (R, = f ,  - r,); 

Absolute deadline d,: is the time before which a task should be completed; 

Relative deadline D,: is the time, relative to the release time, before which a task 
should be completed ( D l  = d,  - r l  ); 



Figure 1.1 Typical timing parameters of a real-time task 

Such parameters are schematically illustrated in Figure 1.1, where the release time is 
represented by an up arrow and the absolute deadline is represented by a down arrow. 

Other parameters that are usually defined on a task are: 

w Slack time or Laxity: denotes the interval between the finishing time and the 
absolute deadline of a task (slack, = d l  - f,); it represents the maximum time a 
task can be delayed to still finish within its deadline; 

w Lateness L,: L,  = f ,  - d, represents the completion delay of a task with respect 
to its deadline; note that if a task completes before its deadline, its lateness is 
negative; 

w Tardiness or E.xceeding rime E, :  E, = n~ax(O.  L,)  is the time a task stays active 
after its deadline. 

If the same computational activity needs to be executed several times on different data, 
then a task is characterized as a sequence of multiple instances, or jobr. In general, 
a task r, is modeled as a (finite or infinite) stream of jobs, 7, ,, ( J  = 1 . 2 . .  . .), each 
characterized by a release time r ,  , , an execution time c ,  , , a finishing time f ,  , , and 
an absolute deadline d ,  , . 

1.1.2 TYPICAL TASK MODELS 

Depending on the timing requirements defined on a computation, tasks are classified 
into four basic categories: hard, firm, soft, and non real time. 



A task r, is said to be /tar-d if all its jobs have to complete within their deadline 
( V j  f , . ,  < d,  J), otherwise a critical faillre may occur in the system. 

A task is said to b e j m  if only a limited number of jobs are allowed to miss their 
deadline. In [KS95], Koren and Shasha defined a firm task model in which only one 
job every S is allowed to miss its deadline. When a job misses its deadline, it is 
aborted and the next S - 1 jobs must be guaranteed to complete within their deadlines. 
A slightly different firm model, proposed by Hamdaoui and Ramanathan in [HR95], 
allows specifying tasks in which at least k jobs every i n  must meet their deadlines. 

A task is said to be sqff if the value of the produced result gracefully degrades with 
its response time. For some applications, there is no deadline associated with soft 
computations. In this case, the objective of the system is to reduce their response times 
as much as possible. In other cases, a soft deadline can be associated with each job, 
meaning that thejob should complete before its deadline to achieve its best performance. 
However, if a soft deadline is missed, the system keeps working at a degraded level 
of performance. To precisely evaluate the performance degradation caused by a soft 
deadline miss, a performance value function can be associated with each soft task, as 
described in Chapter 2. 

Finally, a task is said to be norl r e d  time if the value of the produced result does not 
depend on the completion time of its computation. 

1.1.3 ACTIVATION MODES 

In a computer controlled system, a computational activity can either be activated by a 
timer at predefined time instants (time-triggered activation) or by the occurrence of a 
specific event (event-triggered activation). 

When jobs activations are triggered by time and are separated by a fixed interval of time, 
the task is said to be periodic. More precisely, a periodic task 7, is a time-triggered 
task in which the first job 7, 1 is activated at time a,, called the task phase, and each 
subsequent job r, ,+I is activated at time r ,  ,+I = 7 , , + T I ,  where T, is the task period. 
If D, is the relative deadline associated with each job, the absolute deadline of job 7 ,  , 
can be computed as: 

r ,  3 = a, + ( J I  - 1)T, 
d l  1  = r.13 + Dl 

If job activation times are not regular, the task is said to be apenodlc. More precisely, 
an aperiodic task r, is a task in which the activation time of job 7 ,  ~ + 1  is greater than 
or equal to that of its previous job 7 ,  A .  That is, r ,  ~ + 1  > r ,  A .  



If there is a minimum separation time between successive jobs of an aperiodic task, 
the task is said to be sporadic. More precisely, a sporadic task 7 ,  is a task in which 
the difference between the activation times of any two adjacent jobs r, A and 7, ~ + 1  is 
greater than or equal to T,. That is, ?-, > ?-, A + T,. The T, parameter is called the 
?izi~~iwiz~wi interarrival time. 

1.1.4 PROCESSOR WORKLOAD AND BANDWIDTH 

For a general purpose computing system, the processor workload depends on the 
amount of computation required in a unit of time. In a system characterized by aperi- 
odic tasks, the average load p i s  computed as the product of the average computation 
time Crequested by tasks and the average arrival rate A: 

- 
p = CX. 

In a real-time system, however, the processor load also depends on tasks' timing con- 
straints. The same set of tasks with given computation requirements and arrival patterns 
will cause a higher load if it has to be executed with more stringent timing constraints. 

To measure the load of a real-time system in a given interval of time, Baruah, Howell 
and Rosier [BMR90] introduced the concept of processor der~zarzd, defined as follows: 

Definition 1.1 The processor cler~zand y( t l .  t 2 )  in an intenal of firne [ t l ,  t 2 ]  ia the 
arnomf qf conlprtafion that lzaa been releaaed at or ufter t  1 and rmsf be con~plefecl 
~vithin t2. 

Hence, the processor demand g ,  ( t l  , t n )  of task r, is equal to the computation time 
requested by those jobs whose arrival times and deadlines are within [t 1 .  t n ] .  That is: 

For example, given the set of jobs illustrated in Figure 1.2, the processor demand in 
the interval [ t , ,  tb]  is given by the sum of computation times denoted with dark gray, 
that is, those jobs that arrived at or after t ,  and have deadlines at or before tb .  

The total processor demand g(t 1. t 2 )  of a task set in an interval of time [t 1, t2]  is equal 
to the sum of the individual demands of each task. That is, 


