

SERIES IN COMPUTER SCIENCE

Giorgio Buttazzo, Giuseppe Lipari,
Luca Abeni, and Marco Caccamo

Soft Real-Time Systems
Predictability vs. Efficiency

Soft Real-Time Systems

Predictability vs. Efficiency

SERIES IN COMPUTER SCIENCE
Series Editor: Rami G. Melhem

University of Pittsburgh
Pittsburgh, Pennsylvania

DYNAMIC RECONFIGURATION
Architectures and Algorithms
Ramachandran Vaidyanathan and Jerry L. Trahan

ENGINEERING ELECTRONIC NEGOTIATIONS
A Guide to Electronic Negotiation Technologies for the Design and
Implementation of Next-Generation Electronic Markets-Future Silkroads
of ecommerce
Michael Strobel

HIERARCHICAL SCHEDULING IN PARALLEL AND CLUSTER SYSTEMS
Sivarama Dandamudi

MOBILE IP
Present State and Future
Abdul Sakib Mondal

NEAREST NEIGHBOR SEARCH
A Database Perspective
Apostolos N. Papadopoulos and Yannis Manolopoulos

OBJECT-ORIENTED DISCRETE-EVENT SIMULATION WITH JAVA
A Practical Introduction
los6 M. Garrido

A PARALLEL ALGORITHM SYNTHESIS PROCEDURE FOR HIGH-
PERFORMANCE COMPUTER ARCHITECTURES
Ian N. Dunn and Gerard G. L. Meyer

POWER AWARE COMPUTING
Edited by Robert Graybill and Rami Melhem

SOFT REAL-TIME SYSTEMS
Predictability vs. Efficiency
Giorgio Buttazzo, Giuseppe Lipari, Luca Abeni, and Marco Caccamo

THE STRUCTURAL THEORY OF PROBABILITY
New Ideas from Computer Science on the Ancient Problem of Probability
Interpretation
Paolo Rocchi

Soft Real-Time Systems

Predictability us. Efficiency

Giol-gio Buttazzo
l i w e ~ s z ~ l of'Pnllzn
Pnlw. It@

Giuseppe Lipari
Sczioln Szipe~"zo~~e Smzt Atuzn
Pzsn. Itnbl

Luca Abenj
-l.lBI Groi ~p
Pisn. I t d]

Springer -

ISBN 0-387-23701-1

�2005 Springer Science�Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science�Business Media, Inc., 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

Printed in the United States of America. (BS/DH)

9 8 7 6 5 4 3 2 1 SPIN 1136648

springeronline.com

CONTENTS

Preface

INTRODUCTION
1.1 Basic terminology
1.2 From hard to soft real-time systems
1.3 Providing support for soft real-time systems

OVERLOAD MANAGEMENT
2.1 Introduction
2.2 Load definitions
2.3 Admission control methods
2.4 Performance degradation methods
2.5 Service adaptation
2.6 Job skipping
2.7 Period adaptation

TEMPORAL PROTECTION
3.1 Problems without temporal protection
3.2 Providing temporal protection
3.3 The GPS model
3.4 Proportional share scheduling
3.5 Resource reservation techniques
3.6 Resource reservations in dynamic priority systems

3.7 Temporal guarantees
3.8 Resource reservations in operating system kernels

MULTI-THREAD APPLICATIONS
4.1 The thread model
4.2 Global approaches
4.3 Partition-based approaches
4.4 Concluding remarks and open problems

vii

SYNCHRONIZATION PROTOCOLS
5.1 Terminology and notation
5.2 Shared resource in real-time systems
5.3 Synchronization protocols for hard real-time systems
5.4 Shared resources in soft real-time systems
5.5 Extending resource reservation with the SRP
5.6 Resource constraints in dynamic systems
5.7 Concluding remarks

RESOURCE RECLAIMING
6.1 Problems with reservations
6.2 The CASH algorithm
6.3 The GRUB algorithm
6.4 Other forms of reclaiming

QOS MANAGEMENT
7.1 The QoS-based resource allocation model

7.2 Static vs. dynamic resource management
7.3 Integrating design & scheduling issues
7.4 Smooth rate adaptation

FEEDBACK SCHEDULING
8.1 Controlling the number of missed deadlines
8.2 Adaptive reservations
8.3 Application level adaptation
8.4 Workload estimators

STOCHASTIC SCHEDULING
9.1 Background and definitions
9.2 Statistical analysis of classical algorithms
9.3 Real-time queueing theory
9.4 Novel algorithms for stochastic scheduling
9.5 Reservations and stochastic guarantee

REFERENCES

INDEX

PREFACE

Real-time systems technology, traditionally developed for safety-critical systems, has
recently been extended to support novel application domains, including multimedia
systems, monitoring apparatuses, telecommunication networks, mobile robotics, vir-
tual reality, and interactive computer games. Such systems are referred to as m f t
real-time systems, because they are often characterized by a highly dynamic behavior
and flexible timing requirements. In such systems, missing a deadline does not cause
catastrophic consequences on the environment, but only a performance degradation,
often evaluated through some quality of service parameter.

Providing an appropriate support at the operating system level to such emerging ap-
plications is not trivial. In fact, whereas general purpose operating systems are not
predictable enough for guaranteeing the required performance, the classical hard real-
time design paradigm, based on worst-case assumptions and static resource allocation,
would be too inefficient in this context, causing a waste of the available resources and
increasing the overall system cost. For this reason, new methodologies have been in-
vestigated for achieving more flexibility in handling task sets with dynamic behavior,
as well as higher efficiency in resource exploitation.

This book illustrates the typical characteristics of soft real-time applications and presents
some recent methodologies proposed in the literat~lre to support this kind of applica-
tions.

Chapter 1 introduces the basic terminology and concepts used in the book and clearly
illustrates the main characteristics that distinguish soft real-time computing from other
types of computation.

Chapter 2 is devoted to overload management techniques, which are essential in dy-
namic systems where the computational requirements are highly variable and cannot
be predicted in advance.

Chapter 3 introduces the concept of temporal protection, a mechanism for isolating the
temporal behavior of a task to prevent reciprocal interference with the other system
activities.

. . .
Vll l

Chapter 4 deals with the problem of executing several independent multi-thread appli-
cations in the same machine, presenting some methodologies to partition the processor
into several virtual slower processors, in such a way that each application can be inde-
pendently guaranteed from each other.

Chapter 5 presents a number of synchronization protocols for limiting blocking times
when mutually exclusive resources are shared among hard and soft tasks.

Chapter 6 describes resource reclaiming techniques, which enhance resource exploita-
tion when the actual resource usage of a task is different than the amount allocated off
line. These techniques basically provide a method for reassigning the unused resources
to the most demanding tasks.

Chapter 7 treats the issue of quality of service management. It is addressed through an
adequate formulation that univocally maps subjective aspects (such as the perceived
quality that may depend on the user) to objective values expressed by a real number.

Chapter 8 presents some feedback-based approach to real-time scheduling, useful to
adapt the behavior of a real-time system to the actual workload conditions, in highly
dynamic environments.

Chapter 9 addresses the problem of performing a probabilistic analysis of real-time
task sets, with the aim of providing a relaxed form of guarantee for those real-time
systems with highly variable execution behavior. The objective of the analysis is to
derive for each task a probability to meet its deadline or, in general, to complete its
execution within a given interval of time.

Acknowledgments

This work is the result of several years of research activity in the field of real-time
systems. The majority of the material presented in this book is taken from research
papers and has been elaborated to be presented in a simplified form and with a uniform
structure. Though this book carries the names of four authors, it has been positively
influenced by a number of people who gave a substantial contribution in this emerging
field. The authors would like to acknowledgeEnrico Bini, for his insightfill discussions
on schedulability analysis, Paolo Gai for his valuable work on kernel design and algo-
rithms implementation, and Luigi Palopoli for his contribution on integrating real-time
and control issues. Finally, we would like to thank the Kluwer editorial staff for the
support we received during the preparation of the manuscript.

INTRODUCTION

In this chapter we explain the reasons why soft real-time computing is being deeply in-
vestigated d~lring the last years for supporting a set of applicationdomains for which the
hard real-time approach is not suited. Examples of such application domains include
multimedia systems, monitoring apparatuses, robotic systems, real-time graphics, in-
teractive games, and virtual reality.

To better understand the difference between classical hard real-time applications and
soft real-time applications, we first introduce some basic terminology that will be used
throughout the book, then we present the classical design approach used for hard real-
time systems, and then describe the characteristics of some soft real-time application.
Hence, we identify the major problems that a hard real-time approach can cause in these
systems and finally we derives a set of feat~lres that a soft real-time system should have
in order to provide efficient support for these kind of applications.

1 . BASIC TERMINOLOGY

In the common sense, a real-time system is a system that reacts to an event within a
limited amount of time. So, for example, in a web page reporting the state of a Formula
1 race, we say that the race state is reported in real-time if the car positions are updated
"as soon as" there is a change. In this particular case, the expression "as soon as" does
not have a precise meaning and typically refers to intervals of a few seconds.

When a computer is used to control a physical device (e.g., a mobile robot), the time
needed by the processor to react to events in the environment may significantly affect
the overall system's performance. In the example of a mobile robot system, a correct
maneuver performed too late could cause serious problems to the system and/or the

environment. For instance, if the robot is running at a certain speed and an obstacle
is detected along the robot path, the action of pressing the brakes or changing the
robot trajectory should be performed within a maximum delay (which depends on the
obstacle distance and on the robot speed), otherwise the robot could not be able to
avoid the obstacle, thus incurring in a crash.

Keeping the previous example in mind, a real-time system can be more precisely
defined as a computing system in which computational activities must be performed
within predefined timing constraints. Hence, the performance of a real-time system
depends not only on the functional correctness of the results of computations, but also
on the time at which such results are produced.

The word real indicates that the system time (that is, the time represented inside the
computing system) should always be synchronized with the external time reference
with which all time intervals in the environment are measured.

1.1.1 TIMING PARAMETERS

A real-time system is usually modeled as a set of concurrent tasks. Each task represents
a computational activity that needs to be performed according to a set of constraints.
The most significant timing parameters that are typically defined on a real-time com-
putational activity are listed below.

Release time 7 ,: is the time at which a task becomes ready for execution; it is
also referred to as a r r i ~ d time and denoted by a ,;

Start time s,: is the time at which a task starts its execution for the first time;

Computation time C, : is the time necessary to the processor for executing the
task without interruption;

Finishing time f , : is the time at which a task finishes its execution;

Response time R , : is the time elapsed from the task release time and its finishing
time (R, = f , - r,);

Absolute deadline d,: is the time before which a task should be completed;

Relative deadline D,: is the time, relative to the release time, before which a task
should be completed (D l = d, - r l);

Figure 1.1 Typical timing parameters of a real-time task

Such parameters are schematically illustrated in Figure 1.1, where the release time is
represented by an up arrow and the absolute deadline is represented by a down arrow.

Other parameters that are usually defined on a task are:

w Slack time or Laxity: denotes the interval between the finishing time and the
absolute deadline of a task (slack, = d l - f,); it represents the maximum time a
task can be delayed to still finish within its deadline;

w Lateness L,: L, = f , - d, represents the completion delay of a task with respect
to its deadline; note that if a task completes before its deadline, its lateness is
negative;

w Tardiness or E.xceeding rime E, : E, = n~ax(O. L,) is the time a task stays active
after its deadline.

If the same computational activity needs to be executed several times on different data,
then a task is characterized as a sequence of multiple instances, or jobr. In general,
a task r, is modeled as a (finite or infinite) stream of jobs, 7, ,, (J = 1 . 2), each
characterized by a release time r , , , an execution time c , , , a finishing time f , , , and
an absolute deadline d , , .

1.1.2 TYPICAL TASK MODELS

Depending on the timing requirements defined on a computation, tasks are classified
into four basic categories: hard, firm, soft, and non real time.

A task r, is said to be /tar-d if all its jobs have to complete within their deadline
(V j f , . , < d, J), otherwise a critical faillre may occur in the system.

A task is said to b e j m if only a limited number of jobs are allowed to miss their
deadline. In [KS95], Koren and Shasha defined a firm task model in which only one
job every S is allowed to miss its deadline. When a job misses its deadline, it is
aborted and the next S - 1 jobs must be guaranteed to complete within their deadlines.
A slightly different firm model, proposed by Hamdaoui and Ramanathan in [HR95],
allows specifying tasks in which at least k jobs every i n must meet their deadlines.

A task is said to be sqff if the value of the produced result gracefully degrades with
its response time. For some applications, there is no deadline associated with soft
computations. In this case, the objective of the system is to reduce their response times
as much as possible. In other cases, a soft deadline can be associated with each job,
meaning that thejob should complete before its deadline to achieve its best performance.
However, if a soft deadline is missed, the system keeps working at a degraded level
of performance. To precisely evaluate the performance degradation caused by a soft
deadline miss, a performance value function can be associated with each soft task, as
described in Chapter 2.

Finally, a task is said to be norl r e d time if the value of the produced result does not
depend on the completion time of its computation.

1.1.3 ACTIVATION MODES

In a computer controlled system, a computational activity can either be activated by a
timer at predefined time instants (time-triggered activation) or by the occurrence of a
specific event (event-triggered activation).

When jobs activations are triggered by time and are separated by a fixed interval of time,
the task is said to be periodic. More precisely, a periodic task 7, is a time-triggered
task in which the first job 7, 1 is activated at time a,, called the task phase, and each
subsequent job r, ,+I is activated at time r , ,+I = 7 , , + T I , where T, is the task period.
If D, is the relative deadline associated with each job, the absolute deadline of job 7 , ,
can be computed as:

r , 3 = a, + (J I - 1)T,
d l 1 = r.13 + Dl

If job activation times are not regular, the task is said to be apenodlc. More precisely,
an aperiodic task r, is a task in which the activation time of job 7 , ~ + 1 is greater than
or equal to that of its previous job 7 , A . That is, r , ~ + 1 > r , A .

If there is a minimum separation time between successive jobs of an aperiodic task,
the task is said to be sporadic. More precisely, a sporadic task 7 , is a task in which
the difference between the activation times of any two adjacent jobs r, A and 7, ~ + 1 is
greater than or equal to T,. That is, ?-, > ?-, A + T,. The T, parameter is called the
?izi~~iwiz~wi interarrival time.

1.1.4 PROCESSOR WORKLOAD AND BANDWIDTH

For a general purpose computing system, the processor workload depends on the
amount of computation required in a unit of time. In a system characterized by aperi-
odic tasks, the average load p i s computed as the product of the average computation
time Crequested by tasks and the average arrival rate A:

-
p = CX.

In a real-time system, however, the processor load also depends on tasks' timing con-
straints. The same set of tasks with given computation requirements and arrival patterns
will cause a higher load if it has to be executed with more stringent timing constraints.

To measure the load of a real-time system in a given interval of time, Baruah, Howell
and Rosier [BMR90] introduced the concept of processor der~zarzd, defined as follows:

Definition 1.1 The processor cler~zand y(t l . t 2) in an intenal of firne [t l , t 2] ia the
arnomf qf conlprtafion that lzaa been releaaed at or ufter t 1 and rmsf be con~plefecl
~vithin t2.

Hence, the processor demand g , (t l , t n) of task r, is equal to the computation time
requested by those jobs whose arrival times and deadlines are within [t 1 . t n] . That is:

For example, given the set of jobs illustrated in Figure 1.2, the processor demand in
the interval [t , , tb] is given by the sum of computation times denoted with dark gray,
that is, those jobs that arrived at or after t , and have deadlines at or before tb .

The total processor demand g(t 1. t 2) of a task set in an interval of time [t 1, t2] is equal
to the sum of the individual demands of each task. That is,

