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Preface to the Second Edition

This second edition is completed by a number of additional examples and
exercises. In response of comments and questions of students using this book,
solutions of many exercises have been improved for a better understanding.
Some changes and enhancements are concerned with the treatment of skew-
symmetric and rotation tensors in the first chapter. Besides, the text and
formulae have thoroughly been reexamined and improved where necessary.

Aachen, January 2009 Mikhail Itskov



Preface to the First Edition

Like many other textbooks the present one is based on a lecture course given
by the author for master students of the RWTH Aachen University. In spite
of a somewhat difficult matter those students were able to endure and, as far
as I know, are still fine. I wish the same for the reader of the book.

Although the present book can be referred to as a textbook one finds only
little plain text inside. I tried to explain the matter in a brief way, neverthe-
less going into detail where necessary. I also avoided tedious introductions and
lengthy remarks about the significance of one topic or another. A reader in-
terested in tensor algebra and tensor analysis but preferring, however, words
instead of equations can close this book immediately after having read the
preface.

The reader is assumed to be familiar with the basics of matrix algebra
and continuum mechanics and is encouraged to solve at least some of numer-
ous exercises accompanying every chapter. Having read many other texts on
mathematics and mechanics I was always upset vainly looking for solutions to
the exercises which seemed to be most interesting for me. For this reason, all
the exercises here are supplied with solutions amounting a substantial part of
the book. Without doubt, this part facilitates a deeper understanding of the
subject.

As a research work this book is open for discussion which will certainly
contribute to improving the text for further editions. In this sense, I am very
grateful for comments, suggestions and constructive criticism from the reader.
I already expect such criticism for example with respect to the list of references
which might be far from being complete. Indeed, throughout the book I only
quote the sources indispensable to follow the exposition and notation. For this
reason, I apologize to colleagues whose valuable contributions to the matter
are not cited.

Finally, a word of acknowledgment is appropriate. I would like to thank
Uwe Navrath for having prepared most of the figures for the book. Fur-
ther, I am grateful to Alexander Ehret who taught me first steps as well
as some “dirty” tricks in LATEX, which were absolutely necessary to bring the
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manuscript to a printable form. He and Tran Dinh Tuyen are also acknowl-
edged for careful proof reading and critical comments to an earlier version
of the book. My special thanks go to the Springer-Verlag and in particular
to Eva Hestermann-Beyerle and Monika Lempe for their friendly support in
getting this book published.

Aachen, November 2006 Mikhail Itskov
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1

Vectors and Tensors in a Finite-Dimensional
Space

1.1 Notion of the Vector Space

We start with the definition of the vector space over the field of real numbers
R.

Definition 1.1. A vector space is a set V of elements called vectors satisfying
the following axioms.

A. To every pair, x and y of vectors in V there corresponds a vector x + y,
called the sum of x and y, such that

(A.1) x + y = y + x (addition is commutative),

(A.2) (x + y) + z = x + (y + z) (addition is associative),

(A.3) there exists in V a unique vector zero 0 , such that 0 +x = x, ∀x ∈ V,

(A.4) to every vector x in V there corresponds a unique vector −x such that
x + (−x) = 0 .

B. To every pair α and x, where α is a scalar real number and x is a vector in
V, there corresponds a vector αx, called the product of α and x, such that

(B.1) α (βx) = (αβ) x (multiplication by scalars is associative),

(B.2) 1x = x,

(B.3) α (x + y) = αx + αy (multiplication by scalars is distributive with
respect to vector addition),

(B.4) (α+ β) x = αx + βx (multiplication by scalars is distributive with
respect to scalar addition),
∀α, β ∈ R, ∀x,y ∈ V.

Examples of vector spaces.

1) The set of all real numbers R.
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zero vector

vector addition

x

y

2.5x

2x

x

multiplication by a real scalar

−x

x

negative vector

x + y = y + x

Fig. 1.1. Geometric illustration of vector axioms in two dimensions

2) The set of all directional arrows in two or three dimensions. Applying the
usual definitions for summation, multiplication by a scalar, the negative
and zero vector (Fig. 1.1) one can easily see that the above axioms hold
for directional arrows.

3) The set of all n-tuples of real numbers R:

a =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1

a2

.

.
an

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Indeed, the axioms (A) and (B) apply to the n-tuples if one defines ad-
dition, multiplication by a scalar and finally the zero tuple, respectively,
by

a + b =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1 + b1
a2 + b2

.

.
an + bn

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, αa =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

αa1

αa2

.

.
αan

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, 0 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0
0
.
.
0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

4) The set of all real-valued functions defined on a real line.
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1.2 Basis and Dimension of the Vector Space

Definition 1.2. A set of vectors x1,x2, . . . ,xn is called linearly dependent if
there exists a set of corresponding scalars α1, α2, . . . , αn ∈ R, not all zero,
such that

n∑

i=1

αixi = 0 . (1.1)

Otherwise, the vectors x1,x2, . . . ,xn are called linearly independent. In this
case, none of the vectors xi is the zero vector (Exercise 1.2).

Definition 1.3. The vector

x =
n∑

i=1

αixi (1.2)

is called linear combination of the vectors x1,x2, . . . ,xn, where αi ∈ R (i
= 1, 2, . . . , n).

Theorem 1.1. The set of n non-zero vectors x1,x2, . . . ,xn is linearly depen-
dent if and only if some vector xk (2 ≤ k ≤ n) is a linear combination of the
preceding ones xi (i = 1, . . . , k − 1).

Proof. If the vectors x1,x2, . . . ,xn are linearly dependent, then

n∑

i=1

αixi = 0 ,

where not all αi are zero. Let αk (2 ≤ k ≤ n) be the last non-zero number, so
that αi = 0 (i = k + 1, . . . , n). Then,

k∑

i=1

αixi = 0 ⇒ xk =
k−1∑

i=1

−αi

αk
xi.

Thereby, the case k = 1 is avoided because α1x1 = 0 implies that x1 = 0
(Exercise 1.1). Thus, the sufficiency is proved. The necessity is evident.

Definition 1.4. A basis of a vector space V is a set G of linearly independent
vectors such that every vector in V is a linear combination of elements of G.
A vector space V is finite-dimensional if it has a finite basis.

Within this book, we restrict our attention to finite-dimensional vector spaces.
Although one can find for a finite-dimensional vector space an infinite number
of bases, they all have the same number of vectors.
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Theorem 1.2. All the bases of a finite-dimensional vector space V contain
the same number of vectors.

Proof. Let G = {g1, g2, . . . , gn} and F = {f1,f2, . . . ,fm} be two arbitrary
bases of V with different numbers of elements, say m > n. Then, every vector
in V is a linear combination of the following vectors:

f1, g1, g2, . . . , gn. (1.3)

These vectors are non-zero and linearly dependent. Thus, according to The-
orem 1.1 we can find such a vector gk, which is a linear combination of the
preceding ones. Excluding this vector we obtain the set G′ by

f1, g1, g2, . . . , gk−1, gk+1, . . . , gn

again with the property that every vector in V is a linear combination of the
elements of G′. Now, we consider the following vectors

f1,f2, g1, g2, . . . , gk−1, gk+1, . . . , gn

and repeat the excluding procedure just as before. We see that none of the
vectors f i can be eliminated in this way because they are linearly independent.
As soon as all gi (i = 1, 2, . . . , n) are exhausted we conclude that the vectors

f1,f2, . . . ,fn+1

are linearly dependent. This contradicts, however, the previous assumption
that they belong to the basis F .

Definition 1.5. The dimension of a finite-dimensional vector space V is the
number of elements in a basis of V.

Theorem 1.3. Every set F = {f1,f2, . . . ,fn} of linearly independent vec-
tors in an n-dimensional vectors space V forms a basis of V. Every set of
more than n vectors is linearly dependent.

Proof. The proof of this theorem is similar to the preceding one. Let G =
{g1, g2, . . . , gn} be a basis of V. Then, the vectors (1.3) are linearly dependent
and non-zero. Excluding a vector gk we obtain a set of vectors, say G′, with
the property that every vector in V is a linear combination of the elements
of G′. Repeating this procedure we finally end up with the set F with the
same property. Since the vectors f i (i = 1, 2, . . . , n) are linearly independent
they form a basis of V. Any further vectors in V, say fn+1,fn+2, . . . are thus
linear combinations of F . Hence, any set of more than n vectors is linearly
dependent.

Theorem 1.4. Every set F = {f1,f2, . . . ,fm} of linearly independent vec-
tors in an n-dimensional vector space V can be extended to a basis.


