Vladimir Parpura Philip G. Haydon Editors

Astrocytes in (Patho)Physiology of the Nervous System

Vladimir Parpura Philip G. Haydon *Editors*

Astrocytes in (Patho)Physiology of the Nervous System

Astrocytes in (Patho)Physiology of the Nervous System Vladimir Parpura • Philip G. Haydon Editors

Astrocytes in (Patho)Physiology of the Nervous System

Editors Vladimir Parpura Department of Neurobiology Center for Glial Biology in Medicine Civitan International Research Center Atomic Force Microscopy & Nanotechnology Laboratories Evelyn F. McKnight Brain Institute University of Alabama Birmingham, AL, USA vlad@uab.edu

Philip G. Haydon Department of Neuroscience Tufts University School of Medicine 136 Harrison Avenue Boston, MA 02111 philip.haydon@tufts.edu

ISBN: 978-0-387-79491-4 e-ISE DOI: 10.1007/978-0-387-79492-1

e-ISBN: 978-0-387-79492-1

Library of Congress Control Number: 2008935085

© Springer Science+Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

springer.com

To Vedrana, Vuga and Ivan Vladimir Parpura

To Yolande, Rachel, Daniel and Julia Philip G. Haydon

Preface

Astrocytes were the original neuroglia that Ramón y Cajal visualized in 1913 using a gold sublimate stain. This stain targeted intermediate filaments that we now know consist mainly of glial fibrillary acidic protein, a protein used today as an astrocytic marker. Cajal described the morphological diversity of these cells with some astrocytes surrounding neurons, while the others are intimately associated with vasculature. We start the book by discussing the heterogeneity of astrocytes using contemporary tools and by calling into question the assumption by classical neuroscience that neurons and glia are derived from distinct pools of progenitor cells. Astrocytes have long been neglected as active participants in intercellular communication and information processing in the central nervous system, in part due to their lack of electrical excitability. The follow up chapters review the "nuts and bolts" of astrocytic physiology; astrocytes possess a diverse assortment of ion channels, neurotransmitter receptors, and transport mechanisms that enable the astrocytes to respond to many of the same signals that act on neurons. Since astrocytes can detect chemical transmitters that are released from neurons and can release their own extracellular signals there is an increasing awareness that they play physiological roles in regulating neuronal activity and synaptic transmission. In addition to these physiological roles, it is becoming increasingly recognized that astrocytes play critical roles during pathophysiological states of the nervous system; these states include gliomas, Alexander disease, and epilepsy to mention a few. The goal of this book is to integrate the body of information that has accumulated in recent years revealing the active role of astrocytes in physiological processing in the central nervous system and to use this as a basis for identifying pathological roles for these glial cells in the brain.

Birmingham, AL Boston, MA Vlad Parpura Phil Haydon

Acknowledgment

We would like to thank all the authors for their contributions. This book would not exist without you. This was an exciting journey. We made it.

Contents

1	Astrocyte Heterogeneity or Homogeneity? Harold K. Kimelberg	1
2	Neural Stem Cells Disguised as Astrocytes Rebecca A. Ihrie and Arturo Alvarez-Buylla	27
3	Neurotransmitter Receptors in Astrocytes Alexei Verkhratsky	49
4	Specialized Neurotransmitter Transporters in Astrocytes Yongjie Yang and Jeffrey D. Rothstein	69
5	Connexin Expression (Gap Junctions and Hemichannels) in Astrocytes Eliana Scemes and David C. Spray	107
6	Regulation of Potassium by Glial Cells in the Central Nervous System Paulo Kofuji and Eric A. Newman	151
7	Energy and Amino Acid Neurotransmitter Metabolism in Astrocytes Helle S. Waagepetersen, Ursula Sonnewald, and Arne Schousboe	177
8	Calcium Ion Signaling in Astrocytes Joachim W. Deitmer, Karthika Singaravelu, and Christian Lohr	201
9	Astrocytes in Control of the Biophysical Properties of the Extracellular Space Lydia Vargova and Eva Sykova	225

10	Structural Association of Astrocytes with Neurons and Vasculature: Defining Territorial Boundaries Andreas Reichenbach and Hartwig Wolburg	251
11	Synaptic Information Processing by Astrocytes Gertrudis Perea and Alfonso Araque	287
12	Mechanisms of Transmitter Release from Astrocytes Erik B. Malarkey and Vladimir Parpura	301
13	Release of Trophic Factors and Immune Molecules from Astrocytes Ying Y. Jean, Issa P. Bagayogo, and Cheryl F. Dreyfus	351
14	Molecular Approaches for Studying Astrocytes Todd Fiacco, Kristi Casper, Elizabeth Sweger, Cendra Agulhon, Sarah Taves, Suzanne Kurtzer-Minton, and Ken D. McCarthy	383
15	The Tripartite Synapse Michael M. Halassa and Philip G. Haydon	407
16	Glia-Derived D-Serine and Synaptic Plasticity Magalie Martineau, Stéphane H.R. Oliet, and Jean-Pierre Mothet	417
17	Purinergic Signaling in Astrocyte Function and Interactions with Neurons R. Douglas Fields	443
18	Astrocyte Control of Blood Flow Grant R.J. Gordon, Sean J. Mulligan, and Brian A. MacVicar	461
19	A Role for Glial Cells of the Neuroendocrine Brain in the Central Control of Female Sexual Development Alejandro Lomniczi and Sergio R. Ojeda	487
20	Physiological and Pathological Roles of Astrocyte-mediated Neuronal Synchrony Giorgio Carmignoto and Micaela Zonta	513
21	Role of Ion Channels and Amino-Acid Transporters in the Biology of Astrocytic Tumors Harald Sontheimer	527

Contents

22	Connexins and Pannexins: Two Gap Junction Families Mediating Glioma Growth Control Charles P.K. Lai and Christian C. Naus	547
23	The Impact of Astrocyte Mitochondrial Metabolism on Neuroprotection During Aging Lora T. Watts and James D. Lechleiter	569
24	Alexander Disease: A Genetic Disorder of Astrocytes Michael Brenner, James E. Goldman, Rov A. Quinan, and Albee Messing	591
25	Role of Astrocytes in Epilepsy Devin K. Binder and Christian Steinhäuser	649
26	Hepatic Encephalopathy: A Primary Astrocytopathy Roger F. Butterworth	673
Ind	ex	693

Contributors

Cendra Agulhon

Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Arturo Alvarez-Buylla

Department of Neurosurgery and Institute for Regeneration Medicine, University of California San Francisco, San Francisco, CA, USA

Alfonso Araque

Instituto Cajal, CSIC, Doctor Arce 37, Madrid, Spain

Issa P. Bagayogo

Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Medical School, Piscataway, NJ, USA

Devin K. Binder

Department of Neurological Surgery, University of California, Irvine, CA, USA

Michael Brenner

Department of Neurobiology, Evelyn F. McKnight Brain Institute, Center for Glial Biology in Medicine, University of Alabama Birmingham, Birmingham, AL, USA

Roger F. Butterworth

Neuroscience Research Unit, CHUM, University of Montreal, Montreal, QC, Canada

Giorgio Carmignoto

Istituto CNR di Neuroscienze and Dipartimento di Scienze Biomediche Sperimentali, Università di Padova, Viale G. Colombo 3, Padova 35121, Italy

Kristi Casper

Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Joachim W. Deitmer

Abteilung für Allgemeine Zoologie, FB Biologie, TU Kaiserslautern, Kaiserslautern, Germany

Cheryl F. Dreyfus

Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Medical School, Piscataway, NJ, USA

Todd Fiacco

Department of Cell Biology & Neuroscience, University of California, Riverside, CA, USA

R. Douglas Fields

Nervous System Development and Plasticity Section, National Institutes of Health, NICHD, Bethesda, MD, USA

James E. Goldman

Department of Pathology and The Center for Neurobiology and Behavior, Columbia University, New York, NY, USA

Grant R.J. Gordon

Department of Psychiatry and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada

Michael M. Halassa

Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA

Philip G. Haydon

Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA

Rebecca A. Ihrie

Department of Neurosurgery and Institute for Regeneration Medicine, University of California San Francisco, San Francisco, CA, USA

Ying Y. Jean

Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Medical School, Piscataway, NJ, USA

Harold K. Kimelberg

Neural and Vascular Biology, Ordway Research Institute, Inc., Albany, NY, USA

Paulo Kofuji

Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA

Suzanne Kurtzer-Minton

Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Charles P.K. Lai

Department of Cellular and Physiological Sciences, The Faculty of Medicine, The University of British Columbia, Vancouver V6T 1Z3, BC, Canada

James D. Lechleiter

Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA

Christian Lohr

Abteilung für Allgemeine Zoologie, FB Biologie, TU Kaiserslautern, Kaiserslautern, Germany

Alejandro Lomniczi

Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR, USA

Brian A. MacVicar

Department of Psychiatry and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada,

Erik B. Malarkey

Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy & Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, USA

Magalie Martineau

Centre de Recherche INSERM, U862, Université Victor Segalen Bordeaux 2, Bordeaux, France

Ken D. McCarthy

Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Albee Messing

Waisman Center and Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI, USA

Jean-Pierre Mothet

Centre de Recherche INSERM, U862, Université Victor Segalen Bordeaux 2, Bordeaux, France

Sean J. Mulligan Department of Physiology, University of Saskatchewan, Saskatoon, SK, Canada

Christian C. Naus

Department of Cellular and Physiological Sciences, The Faculty of Medicine, The University of British Columbia, Vancouver V6T 1Z3, BC, Canada

Eric A. Newman

Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA

Sergio R. Ojeda

Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR, USA

Stéphane H.R. Oliet

Centre de Recherche INSERM, U862, Université Victor Segalen Bordeaux 2, Bordeaux, France

Vladimir Parpura

Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy & Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, USA

Gertrudis Perea

Instituto Cajal, CSIC, Doctor Arce 37, Madrid, Spain

Roy A. Quinlan

School of Biological and Biomedical Sciences, The University, Durham, UK

Andreas Reichenbach Paul Flechsig Institute of Brain Research, Leipzig University, Leipzig, Germany

Jeffrey D. Rothstein

Departments of Neurology and Neuroscience, Johns Hopkins University, Baltimore, MD, USA

Eliana Scemes

The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA

Arne Schousboe

Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark

Karthika Singaravelu

Abteilung für Allgemeine Zoologie, FB Biologie, TU Kaiserslautern, Kaiserslautern, Germany

Ursula Sonnewald

Department of Neurosciences, Norwegian University of Science and Technology, Trondheim, Norway

Harald Sontheimer

Department of Neurobiology & Center for Glial Biology in Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA

xviii