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Preface

Micromechanical manufacturing based on microequipment creates new possibili-

ties in goods production. If microequipment sizes are comparable to the sizes of the

microdevices to be produced, it is possible to decrease the cost of production

drastically. The main components of the production cost - material, energy, space

consumption, equipment, and maintenance - decrease with the scaling down of

equipment sizes. To obtain really inexpensive production, labor costs must be

reduced to almost zero. For this purpose, fully automated microfactories will be

developed.

To create fully automated microfactories, we propose using artificial neural

networks having different structures. The simplest perceptron-like neural network

can be used at the lowest levels of microfactory control systems. Adaptive Critic

Design, based on neural network models of the microfactory objects, can be used

for manufacturing process optimization, while associative-projective neural net-

works and networks like ART could be used for the highest levels of control

systems.

We have examined the performance of different neural networks in traditional

image recognition tasks and in problems that appear in micromechanical

manufacturing. We and our colleagues also have developed an approach to micro-

equipment creation in the form of sequential generations. Each subsequent genera-

tion must be of a smaller size than the previous ones and must be made by previous

generations. Prototypes of first-generation microequipment have been developed

and assessed.

Interaction between neural networks and micromechanics does not have only one

direction – while neural networks are helpful in micromechanics, micromechanics

also can help to find new applications for neural networks. Currently, it is difficult

to examine the effectiveness of neural networks in mechanical industry automation

because each experiment in a mechanical factory is very expensive. Micromecha-

nical factories will help us to examine different neural networks, compare them in

mechanical production tasks, and recommend their use in conventional mechanics.
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The results given in this book permit us to estimate optimistically the perspectives

of neural network applications in micromechanics.
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Chapter 1

Introduction

The title of the book, “Neural Networks and Micromechanics,” seems artificial.

However, the scientific and technological developments in recent decades demon-

strate a very close connection between the two different areas of neural networks

and micromechanics. The purpose of this book is to demonstrate this connection.

Some artificial intelligence (AI) methods, including neural networks, could be

used to improve automation system performance in manufacturing processes. How-

ever, the implementation of these AI methods within industry is rather slow because

of the high cost of conducting experiments using conventional manufacturing and

AI systems. To lower the cost, we have developed special micromechanical equip-

ment that is similar to conventional mechanical equipment but of much smaller size

and therefore of lower cost. This equipment could be used to evaluate different AI

methods in an easy and inexpensive way. The proved methods could be transferred

to industry through appropriate scaling. In this book, we describe the prototypes of

low cost microequipment for manufacturing processes and the implementation of

some AI methods to increase precision, such as computer vision systems based on

neural networks for microdevice assembly and genetic algorithms for microequip-

ment characterization and the increase of microequipment precision.

The development of AI technologies opens an opportunity to use them not only

for conventional applications (expert systems, intelligent data bases [1], technical

diagnostics [2, 3] etc.), but also for total automation of mechanical manufacturing.

Such AI methods as adaptive critic design [4, 5], neural network-based computer

vision systems [6–10], etc. could be used to solve automation problems.

To examine this opportunity, it is necessary to create an experimental factory

with fully-automated manufacturing processes. This is a very difficult and expen-

sive task.

To make very small mechanical microequipment, a new technology was pro-

posed [11–14]. This technology is based on micromachine tools and microassembly

devices, which can be produced as sequential generations of microequipment. Each

generation should include equipment (machine tools, manipulators, assembly

devices, measuring instruments, etc.) sufficient for manufacturing identical but

smaller equipment. Each subsequent equipment generation could be produced by

E. Kussul et al. Neural Networks and Micromechanics,
DOI 10.1007/978-3-642-02535-8_1, # Springer-Verlag Berlin Heidelberg 2010
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the preceding one. The size of each subsequent generation’s equipment is smaller

than the overall size of the preceding generation.

The first-generation microequipment can be produced by conventional large-

scale equipment. Using microequipment of this first generation, a second micro-

equipment generation having smaller overall sizes can be produced.

We call this approach to mechanical microdevice manufacturing Microequip-

ment Technology (MET) [15].

The proposed MET technology has many advantages:

(1) The equipment miniaturization leads to decreasing the occupied space as well

as energy consumption, and, therefore, the cost of the products.

(2) The labor costs are bound to decrease due to the reduction of maintenance costs

and a higher level of automation expected in MET.

(3) Miniaturization of equipment by MET results in a decrease of its cost. This is a

consequence of the fact that microequipment itself becomes the object of MET.

The realization of universal microequipment that is capable of extended repro-

duction of itself will allow the manufacture of low-cost microequipment in a

few reproductive acts because of the lower consumption of’ materials, energy,

labor, and space in MET. Thus, the miniaturization of equipment opens the way

to a drastic decrease in the unit cost of individual processing.

At a lower unit cost of individual micromachining, the most natural way to

achieve high throughput is to parallelize the processes of individual machining by

concurrent use of a great quantity of the same kind of microequipment. Exploitation

of that great number of microsized machine tools is only feasible with their

automatic operation and a highly automated control of the microfactory as a

whole. We expect that many useful and proved concepts, ideas, and techniques of

automation can be borrowed from mechanical engineering. They vary from the

principles of factory automation (FMS and CAM) to the ideas of unified containers,

clamping devices, and techniques of numerical control. However, the automation of

micromanufacturing has peculiarities that will require the special methods of

artificial intelligence.

Let us consider a general hierarchical structure of the automatic control system

for a micromechanical factory. The lowest (first) level of the system controls the

micromechanical equipment (the micromachine tools and assembly manipulators)

and provides the simplest microequipment diagnostics and the final measurement

and testing of production. The second level of the control system controls the

devices that transport workpieces, tools, parts, and all equipment items; coordinates

the operation of the lowest level devices; and provides the intermediate quality

inspection of production and the more advanced diagnostics of equipment condi-

tion. The third control level contains the system for the automatic choice of process

modes and routes for machining parts. The top (fourth) level of the control system

detects non-standard and alarm situations and makes decisions regarding these

situations, including communication with the operator.

We proceed from the assumption that no more than one operator will manage the

microfactory. This means that almost all the problems arising at any control level
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during the production process should be solved automatically and that the operator

must solve only a few problems, those that are too complex or unusual to be solved

automatically. Since any production process is affected by various disturbances, the

control system should be an adaptive one. Moreover, it should be self-learning

because it is impossible to foresee all kinds of disturbances in advance. AI that is

able to construct the self-learning algorithms and to minimize the participation of

the operator appears especially useful for this task. AI includes different methods

for creating autonomous control systems. The neural classifiers will be particularly

useful at the lowest level of the control system. They could be used to select

treatment modes, check cutting tool conditions, control assembly processes, etc.

They allow for more flexibility in the control system. The system will automatically

compensate for small deviations of production conditions, such as a change in the

cutting tool’s shape or external environment parameters, variations in the structure

of workpiece materials, etc. AI will permit the design of self-learning classifiers and

should provide the opportunity to exclude the participation of a human operator at

this level of control.

At the second control level, the AI system should detect all deviations from the

normal production process and make decisions about how to modify the process to

compensate for the deviation. The compensation should be made by tuning the

parameters of the lower-level control systems. Examples of such deviations are

deviations from the production schedule, failures in some devices, and off-standard

production. At this level, the AI system should contain the structures in which the

interrelations of production process constituents are represented. As in the previous

case, it is desirable to have the algorithms working without the supervisor.

The third control level is connected basically with the change of nomenclature or

volume of the production manufactured by the factory. It is convenient to develop

such a system so that the set-up costs for a new production or the costs to change the

production volume are minimal. The self-learning AI structures formed at the lowest

level could provide the basis for such changes of set-up by selection of the process

parameters, the choice of equipment configuration for machining and assembly, etc.

At the third control level, the AI structures should detect the similarity of new

products with the products that were manufactured in the past. On the basis of this

similarity, the proposals about the manufacturing schedule, process modes, routing,

etc. will be automatically formed and then checked by the usual computational

methods of computer aided manufacturing (CAM). The results of the check, as well

as the subsequent information about the efficiency of decisions made at this level,

may be used for improving the AI system.

The most complicated AI structures should be applied at the top control level.

This AI system level must have the ability to reveal the recent unusual features in

the production process, to evaluate the possible influence of these new features on

the production process, and to make decisions about changing the control system

parameters at the various hierarchical levels or for calling for the operator’s help. At

this level, the control system should contain the intelligence knowledge base, which

can be created using the results of the operation of the lower-level control systems

1 Introduction 3



and knowledge from experts. At the beginning, expert knowledge of macromecha-

nics may be used.

At present, many methods of AI are successfully used in industry [16, 17], Some

of these also could be used for micromechanics. Though the problems of fully-

automated factory creation cannot be investigated experimentally in conventional

industry because of the high cost of the experiments, here we propose to develop a

low-cost micromechanical test bed to solve these problems.

The first prototype of the first generation was designed and manufactured at the

International Research and Training Centre of Information Technologies, which is

a part of V. M. Glushkov Cybernetics Center, Ukraine.

The second prototype of the first generation microequipment was designed and

examined in CCADET, UNAM. The prototypes use adaptive algorithms of the

lowest level.

At present, more sophisticated algorithms based on neural networks and genetic

algorithms are being developed. Below, we describe our experiments in the area of

the development and applications of such algorithms.

This book is intended as a professional reference and also as a textbook for

graduate students in science, engineering, and micromechanics. We expect it to be

particularly interesting to computer scientists and applied mathematicians applying

it to neural networks, artificial intelligence, image recognition, and adaptive control,

among many other fields.
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Chapter 2

Classical Neural Networks

During the last few decades, neural networks have moved from theory to offering

solutions for industrial and commercial problems. Many people are interested in

neural networks from many different perspectives. Engineers use them to build

practical systems to solve industrial problems. For example, neural networks can be

used for the control of industrial processes.

There are many publications that relate to the neural network theme. Every year,

tens or even hundreds of international conferences, symposiums, congresses, and

seminars take place in the world. As an introduction to this theme we can recommend

the books of Robert Hecht-Nielsen [1], Teuvo Kohonen [2], and Philip Wasserman

[3], and a more advanced book that is oriented on the applications of neural networks

and is edited by A. Browne [4]. In this book it is assumed that the reader has some

previous knowledge of neural networks and an understanding of their basic mechan-

isms. In this section we want to present a very short introduction to neural networks

and to highlight the most important moments in neural network development.

2.1 Neural Network History

Attempts to model the human brain appeared with the creation of the first computer.

Neural network paradigms were used for sensor processing, pattern recognition,

data analysis, control, etc. We analyze, in short, different approaches for neural

network development.

2.2 McCulloch and Pitts Neural Networks

The paper of McCulloch and Pitts [5] was the first attempt to understand the

functions of the nervous system. For explanation, they used very simple types of

neural networks, and they formulated the following five assumptions according to

the neuron operation:
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