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Preface

Neural networks provide a way to realize one of our human dreams to make
machines think like us. Artificial neural networks have been developed since
Rosenblatt proposed the Perceptron in 1958. Today, many neural networks are not
treated as black boxes any more. Issues such as robustness and generalization abil-
ities have been brought to the fore. The advances in neural networks have led to
more and more practical applications in pattern recognition, financial engineering,
automatic control and medical diagnosis, to name just a few.

Sensitivity analysis dates back to the 1960s, when Widrow investigated the
probability of misclassification due to weight perturbations, which are caused by
machine imprecision and noisy input. For the purpose of analysis, these pertur-
bations can be simulated by embedding disturbance into the original inputs or
connection weights. The initial idea of sensitivity analysis was then extended to opti-
mization and to applications of neural networks, such as sample reduction, feature
selection, active learning and critical vector learning.

This text should primarily be of interest to graduate students, academics, and
researchers in branches of neural networks, artificial intelligence, machine learning,
applied mathematics and computer engineering where sensitivity analysis of neural
networks and related concepts are used. We have made an effort to make the book
accessible to such a cross-disciplinary audience.

The book is organized into eight chapters, of which Chap. 1 gives an introduction
to the various neural network structures and learning schemes. A literature review
on the methodologies of sensitivity analysis is presented in Chap. 2. Different from
the traditional hypersphere model, the hyper-rectangle model described in Chap. 3
is especially suitable for the most popular and general feedforward network: the
multilayer Perceptron. In Chap. 4, the activation function is also involved in the
calculation of the sensitivity analysis by parameterizing. The sensitivity analysis of
radial basis function networks is discussed in Chaps. 5 and 6, with the former giv-
ing a generalization error model whereas the latter concerns optimizing the hidden
neurons. In Chap. 7, sensitivity is measured in order to encode prior knowledge into
a neural network. In Chap. 8, sensitivity analysis is applied in many applications,
such as dimensionality reduction, network optimization and selective learning.

We would like to express our thanks to many colleagues, friends and students
who provided reviews of different chapters of this manuscript. They include Minh
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vi Preface

Nhut Nguyen, Xiaoqin Zeng, Patrick Chan, Xizhao Wang, Fei Chen and Lu He.
We often find ourselves struggling with many competing demands for our time and
effort. As a result, our families, especially our beloved spouses, are the ones who
suffer the most. We are delighted to dedicate this work to Foo-Lau Yeung, Wilma
Cloete and Jian Liu.

It is with great humility that we would like to acknowledge our Good Lord as the
true creator of all knowledge. This work is the result of our borrowing a small piece
of knowledge from Him.

8 July 2009 Daniel S. Yeung
Ian Cloete

Daming Shi
Wing W.Y. Ng
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Chapter 1
Introduction to Neural Networks

The human brain consists of ten billion densely interconnected nerve cells, called
neurons; each connected to about 10,000 other neurons, with 60 trillion connec-
tions, synapses, between them. By using multiple neurons simultaneously, the brain
can perform its functions much faster than the fastest computers in existence today.
On the other hand, a neuron can be considered as a basic information-processing
unit, whereas our brain can be considered as a highly complex, nonlinear and par-
allel biological information-processing network, in which information is stored and
processed simultaneously. Learning is a fundamental and essential characteristic of
biological neural networks. The ease with which they can learn led to attempts to
emulate a biological neural network in a computer.

In the 1940s, McCulloch and Pitts proposed a model for biological neurons and
biological neural networks. A stimulus is transmitted from dendrites to a soma
via synapses, and axons transmit the response of one soma to another, as shown
in Fig. 1.1. Inspired by the mechanism for learning in biological neurons, artifi-
cial neurons and artificial neural networks can perform arithmetic functions, with
cells corresponding to neurons, activations corresponding to neuronal firing rates,
connections corresponding to synapses, and connection weights corresponding to
synaptic strengths, as shown in Fig. 1.1. The analogy between biological neurons
and artificial neurons is made in Table 1.1. However, neural networks are far too
simple to serve as realistic brain models on the cell level, but they might serve as
very good models for the essential information processing tasks that organisms per-
form. This remains an open question because we have so little understanding of how
the brain actually works (Gallant, 1993).

In a neural network, neurons are joined by directed arcs – connections. The neu-
rons and arcs constitute the network topology. Each arc has a numerical weight that
specifies the influence between two neurons. Positive weights indicate reinforce-
ment; negative weights represent inhibition. The weights determine the behavior of
the network, playing somewhat the same role as in a conventional computer pro-
gram. Typically, there are many inputs for a single neuron, and a subsequent output
of an activation function (or transfer function). Some frequently used activation
functions include:
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