

Visual Development

Third Edition

Nigel W. Daw

Visual Development

Third Edition

⁄ Springer

Visual Development

Nigel W. Daw

Visual Development

Third Edition

ISBN 978-1-4614-9058-6 ISBN 978-1-4614-9059-3 (eBook) DOI 10.1007/978-1-4614-9059-3 Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013949433

1st edition: © Plenum Press, New York 1995

2nd edition: © Springer Science + Business Media, Inc 2006 © Springer Science+Business Media New York 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

implied, with respect to the material contained herein.

Preface

Research in the area of visual development has become a multidisciplinary affair. Students who acquire an interest in the field therefore need to understand several different aspects of the subject. The development of acuity measured by psychophysicists is the concern of optometrists and ophthalmologists, and depends on changes in the anatomy of the retina and the physiology of cells in the visual pathway. Scientists working on the cellular, molecular, and biochemical mechanisms lean on anatomical studies, physiology, and psychophysics in designing and interpreting their experiments. Indeed, the laboratories of the leading scientists working on the subject now all use a large variety of techniques in their studies.

Because the study of visual development is pursued by workers in many disciplines, from medicine to basic science, I have tried to write this book at a level at which it can be understood by a variety of students: graduate students in neurobiology and psychology, as well as optometry students and ophthalmology residents. The text assumes some knowledge of basic terms such as acuity, but a glossary is provided should the reader find some words that are unfamiliar. The emphasis is on facts and conclusions, rather than on methods and procedures. Many details are left out.

However, I hope that the experts will also read the book. The subject has become so wide-ranging that not many people have the time to read literature in all aspects of it. The book is also intended for experts in one area to get a grasp of the basics of the subject in other disciplines that are not their primary discipline.

To write a book covering such a wide variety of disciplines, I have had to simplify. The book does not go into controversies in detail. Instead, it provides my summary of what seems to me to be the best evidence. Not everybody will agree with my synthesis. Some experts will read it and be outraged at some of my statements. However, my outrageous statements were intended to be constructive: I hope that they will provoke thought and point the way to more experiments that will carry the field forward.

I am grateful to Colin Blakemore for inviting me to write this book. The process has been an educational one for me, and led to a number of insights which may have been apparent to others, but not to me. A number of friends and colleagues have helped me in the preparation of the book. Grace Gray in particular read the entire text twice, and improved it throughout. Robert Hess went through the whole section on Visual Deprivation, and made

vi Preface

many valuable comments. John Lisman did the same for the section on Mechanisms. Janette Atkinson, Marty Banks, Oliver Braddick, Jan Naegele, Pasko Rakic, and Josh Wallman read individual chapters in their area of expertise and made many corrections and improvements. Several of my colleagues in the Department of Ophthalmology—Ethan Cohen, Jonathan Kirsch, Thomas Hughes, Colin Barnstable, Silvia Reid and Helen Flavin—gave comments on various portions of the text, and Marc Weitzman read two whole sections. I would like to thank them all. However, I did not adopt all of their suggestions, and the errors and omissions are mine. I would also like to thank Janet Hescock and Bob Brown for help in the preparation of the text and figures, together with support from the Core Grant to Yale University from the National Eye Institute.

Branford, CT, USA

Nigel W. Daw

Preface to the Third Edition

It is almost 20 years since the first edition of this book was written, and considerable research has been done in that time. The development of vernier acuity and contour discrimination have been more carefully defined. Genes that play a role in myopia have been localized. New techniques using Gabor patches in various configurations have enabled scientists to define amblyopia in more careful terms, particularly the concept of spatial uncertainty, and whether it is due to undersampling or distorted sampling. Amblyopia was never simply a matter of a deficit in acuity, but it has taken careful experiments to show exactly what it is beyond that.

Ten years ago, the molecules that govern the crossing of the optic nerve fibers in the chiasm, and which project to the contralateral side, and which to the ipsilateral side were completely unknown. So were the molecules that govern the topography of the projections within the visual system. Today, we know some molecules involved in both these developmental events, as well as some that mark the boundaries of the visual cortex.

The technique of optical imaging of the visual cortex has enabled scientists to visualize the ocular dominance and orientation columns. Scientists can now use this technique to study the development of these columns, and the effect of various forms of visual deprivation on them, in a way that was not possible with single unit recordings.

It has also become increasingly apparent that there are many critical periods in the development of the visual system. The critical period for the effect of a particular form of visual deprivation in many cases lasts longer than the period of development of the property affected, and the period during which recovery can be obtained lasts longer still. Moreover, there are different critical periods for different properties. Properties handled at a higher level of the system have a later critical period. In addition, the critical period can be affected by the previous visual history of the animal, and by the technique used to evaluate it. For all these reasons, the chapter on critical periods has become much more involved.

Twenty years ago, quite a lot was known about mechanisms of long-term potentiation and long-term depression, and not much about plasticity in the visual cortex resulting from monocular deprivation. Today, a considerable amount is known about mechanisms of ocular dominance plasticity, and what is known about LTP and LTD does not add a great deal, so the chapter on the latter has been eliminated.

viii Preface to the Third Edition

The subject of the effect of out-of-focus images on the size of the eyeball has also been a very active area of research. We still do not know how the signal gets from the neural retina to the choroid and sclera, but there are a few molecules known that increase in response to plus lenses and decrease in response to minus lenses, or vice versa, that may be candidates for the signal.

Moreover, the best treatment for amblyopia has become much better known, as therapists concentrate on properties other than acuity. Basic scientists have quantified the improvements that can be made by not patching the amblyopic eye all of the time, and working with both eyes to improve binocular vision at the same time as the acuity in the amblyopic eye. Use of perceptual learning and video games has helped by increasing activity and attention as the therapy is done. Many of the principles have been employed by pediatric vision therapists for some time, but the publicity generated by "Stereo Sue" and others has helped to broadcast them.

For all these reasons, it is high time that this book should be revised. The aim of the book is the same as it was in the first edition—to provide a short summary of findings in the field that can be used by ophthalmology residents, optometry students, graduate students in neurobiology and psychology, senior undergraduates, and, since the field is so diverse, for experts to read chapters outside their area of expertise.

For this third edition, there is a Web site, www.visual-development.net, with links to various videos that illustrate points and procedures discussed in the book. See also the list of useful videos after the table of contents.

I am most grateful to Paul Harris for reading the whole book and providing a number of suggestions for clarification, as well as for professional guidance on the new chapter on "Treatment of Amblyopia." I am also very grateful to Terri Lewis, Len White, Mike Crair, Eileen Birch, Dennis Levi, Donald Mitchell, John Lisman, Takao Hensch, and David Troilo, who provided comments on individual chapters and hopefully caught most of my errors, but I am sure that some remain. I also thank Simina Calin, my editor at Springer, for all her help and guidance.

Contents

I	References
2	Functional Organization of the Visual System
	General Anatomical Organization
	Function in the Retina
	Function in the Lateral Geniculate Nucleus
	Function in the Visual Cortex
	The Columnar Organization of Cortex
	Parallel Processing Within the Visual System
	Hierarchical Processing Within the Visual System
	Higher Visual Areas
	Summary
	References
Par	et I Development of the Visual System
3	Development of Visual Capabilities
	Methods for Studying Infant Vision
	What Can Be Seen
	Faces
	Biological Motion and Optic Flow
	Contour Integration, Illusory Contours,
	and Continuity Behind Other Objects
	Depth Perception
	Fusion and Orthophoria
	Color
	Vision in the Periphery of the Visual Field
	What Can Be Measured
	Acuity
	Contrast Sensitivity
	Vernier Acuity
	Stereo
	Prestereopsis and Poststereopsis
	The Prestereoptic and Poststereoptic Periods
	Orientation, Direction, Movement
	Adaptation

x Contents

	Development of Eye Movements
	Fixation and Refixation
	Saccades
	Vergence and Accommodation
	Optokinetic Nystagmus
	Summary
	References
4	Anatomical Development of the Visual System
	Development of the Retina and Its Projections
	Crossing in the Optic Chiasm
	Errors at the Chiasm in Albino Animals
	Development of the Lateral Geniculate Nucleus
	Topography of Projections from Retina
	Cell Connections Within the Overall Topographic Projection
	Development of Visual Cortex and Projections to It
	Development of Geniculocortical Projections
	Formation of Layers in the Cortex
	Role of the Subplate Neurons
	Migration of GABA Cells
	Development of Connections to and from Layers
	in the Visual Cortex
	Development of Clusters of Cells with Similar Properties
	Formation of Ocular Dominance Columns
	Formation of Blobs and Pinwheels
	Development of Lateral Connections
	Other Events During Differentiation
	References
	References
5	Development of Receptive Field Properties
	Development in the Retina and Lateral Geniculate Nucleus
	Development in Primary Visual Cortex
	Other Parts of Cortex Concerned with Vision
	Development in the Absence of Light and Activity
	References
Par	t II Amblyopia and the Effects of Visual Deprivation
	•
6	Modifications to the Visual Input That Lead
	to Nervous System Changes
	Strabismus
	Anisometropia
	Astigmatism
	Cataract and Corneal Opacities
	Myopia
	References

7	Known Physiological and Anatomical Changes That Result	
	from Optical and Motor Deficits	10
	Monocular Deprivation	10
	Binocular Deprivation and Congenital Blindness	11
	Retinal Lesions	11
	Orientation and Direction Deprivation	11
	One Eye Out of Focus	11
	Strabismus	11
	References	12
8	What Is Amblyopia?	12
	Amblyopia from Anisometropia	12
	Effect of Cataracts	12
	Amblyopia from Strabismus	12
	Properties Affected in a Variety of Causes of Amblyopia	12
	Crowding	13
	Vernier Acuity	13
	Spatial Uncertainty	13
	Components of the Loss in Acuity in Various Strabismics	13
	Detailed Comparison of Groups of Amblyopes	13
	The Peripheral Field of View	13
	A Rapid Test for Amblyopia	14
	Eye Movements in Amblyopes	14
	Fixation	14
	Saccades	14
	Reading	14
	Summary	14
	References	14
9	Cuitical Daviada	14
y	Critical Periods	14
	General Principles from Experiments with Animals	14
	The System Is Most Plastic Between Eye Opening	1./
	and Puberty	14
	More Severe Deprivations Have a Larger Effect	14
	Higher Levels of the System Have a Later Critical Period	14
	Different Properties Have Different Critical Periods	15
	The Critical Period Depends on the Previous Visual	
	History of the Animal	15
	Procedures Affect the Critical Period	15
	The Periods of Development, Disruption,	
	and Recovery May Be Different	15
	Critical Periods in Humans	15
	Disruption of Acuity	15
	Recovery from Disruption of Acuity	15
	Binocularity	15
	Stereopsis	15
	Movement	16
	Plasticity and Learning in the Adult	16
	Summary	16
	References	16

xii Contents

10	Treatment of Amblyopia	167	
	Optical and Motor Treatment		
	Patching		
	Equalizing the Monocular Skills in the Two Eyes	169	
	Binocularity and Fusion	170	
	Stereopsis	172	
	Eye Movements	173	
	Activity During Therapy	174	
	Perceptual Learning	174	
	Video Games	175	
	Pointers from Animal Experiments	176	
	Sequencing of Treatment	177	
	Treatment of Expectations	177	
	Success Rates	178	
	References	178	
Par	t III Mechanisms of Plasticity		
	·		
11	Concepts of Plasticity	183	
	The Hebb Postulate	184	
	How Electrical Activity Can Strengthen Some Synapses		
	and Weaken Others	185	
	Feedback from the Postsynaptic Cell to the Presynaptic Terminals	186	
	Criteria for Critical Factors in the Critical Period	187	
	References	189	
12	Plasticity in the Visual Cortex	191	
	Electrical Activity	192	
	Polarization of the Postsynaptic Neuron	193	
	NMDA Receptors	195	
	Metabotropic Glutamate Receptors	197	
	GABA and Excitation-Inhibition Balance	198	
	Brain-Derived Neurotrophic Factor (BDNF) and Insulin-Like		
	Growth Factor-1 (IGF-1), and Tumor Necrosis Factor α	200	
	Calcium, α-Calcium/Calmodulin Kinase, and Calcineurin	201	
	cAMP and Protein Kinase A	202	
	A Kinase Anchoring Protein at the Postsynaptic Density	204	
	Other Protein Kinases	204	
	Cyclic AMP Response Binding Element (CREB)	204	
	Genes and Protein Synthesis.	204	
	Structural Factors	206	
	Modulatory Factors	207	
	Nerve Growth Factor (NGF)	208	
	Immune System Molecules	208	
	Different Mechanisms for Different Aspects of Plasticity	209	
	Factors to Increase Plasticity	209	
	Summary	210	
	References	210	

13	Visually Induced Myopia and Emmetropization	217
	Emmetropization	217
	Local Signals Go from the Retina to the Eyeball	218
	Sensitive Period for Changes in Eyeball Growth	220
	Changes in Both Choroid and Sclera	221
	Mechanisms for the Signals Going from the Retina	
	to the Eyeball	221
	Genes Associated with Myopia	225
	Possible Treatments	225
	References	227
Glo	ssary	231
Ind	av	2/11