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© Remigijus Paulavičius, Julius Žilinskas 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


Preface

Simplicial global optimization focuses on deterministic covering methods for global
optimization partitioning the feasible region by simplices. Although rectangular
partitioning is used most often in global optimization, simplicial covering has
advantages shown in this book. The purpose of the book is to present global
optimization methods based on simplicial partitioning in one volume. The book
describes features of simplicial partitioning and demonstrates its advantages in
global optimization.

A simplex is a polyhedron in a multidimensional space, which has the minimal
number of vertices. Therefore simplicial partitions are preferable in global optimiza-
tion when the values of the objective function at all vertices of partitions are used to
evaluate subregions.

The feasible region defined by linear constraints may be covered by simplices
and therefore simplicial optimization algorithms may cope with linear constraints
in a delicate way by initial covering. This makes simplicial partitions very attractive
for optimization problems with linear constraints.

There are optimization problems where the objective functions have symmetries
which may be taken into account for reducing the search space significantly by
setting linear inequality constraints. The resulted search region may be covered by
simplices.

Applications benefiting from simplicial partitioning are examined in the book:
nonlinear least squares regression, center-based clustering of data having one
feature, and pile placement in grillage-type foundations. In the examples shown,
the search region reduced taking into account symmetries of the objective functions
is a simplex thus simplicial global optimization algorithms may use it as a starting
partition.

The book provides exhaustive experimental investigation and shows the impact
of various bounds, types of subdivision, and strategies of candidate selection on
the performance of global optimization algorithms. Researchers and engineers will
benefit from simplicial partitioning algorithms presented in the book: Lipschitz
branch-and-bound, Lipschitz optimization without the Lipschitz constant. We hope
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vi Preface

the readers will be inspired to develop simplicial versions of other algorithms
for global optimization and even use other non-rectangular partitions for special
applications.

The book deals with theoretical, computational, and application aspects of
simplicial global optimization. It is intended for scientists and researchers in
optimization and may also serve as a useful research supplement for Ph.D. students
in mathematics, computer science, and operations research.

The authors are very grateful to Prof. Panos Pardalos, Distinguished Professor at
the University of Florida and Director of the Center for Applied Optimization, for
his continuing encouragement and support. The authors highly appreciate Springer’s
initiative to publish SpringerBriefs on Optimization and the given opportunity
to publish their book in this series. The authors would like to thank Springer’s
publishing editor Razia Amzad for guiding us to publication of the book.

Postdoctoral fellowship of R. Paulavičius is being funded by European Union
Structural Funds project “Postdoctoral Fellowship Implementation in Lithuania”
within the framework of the Measure for Enhancing Mobility of Scholars and Other
Researchers and the Promotion of Student Research (VP1-3.1-ŠMM-01) of the
Program of Human Resources Development Action Plan.

Vilnius, Lithuania Remigijus Paulavičius
Julius Žilinskas
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Chapter 1
Simplicial Partitions in Global Optimization

1.1 Covering Methods for Global Optimization

Many problems in engineering, physics, economics, and other fields may be formu-
lated as optimization problems, where the optimal value of an objective function
must be found [23, 55, 59, 110, 114, 134, 136]. The general global optimization
problems solved by algorithms presented in this book can be written as follows:

min f .x/; f W Rn ! R

s.t. x 2 D W g1.x/ � 0;

::: (1.1)

gm.x/ � 0;

l � x � u;

where D is a nonempty feasible region, g1.x/; : : : ; gm.x/ are linear constraint
functions, and l D .l1; : : : ; ln/, u D .u1; : : : ; un/ 2 R

n.
Most optimization problems considered in this book are constrained only by

hyper-rectangular bounds on the variables. However, problems with linear inequal-
ity constraints will also be considered. For convergence reasons, we assume that the
objective function is continuous in the neighborhood of the global minimizer. How-
ever, it can otherwise be nonlinear, non-differentiable, non-convex, and multimodal.

Besides the global optimum f � one or all global optimizers x� W f .x�/ D f �
must be found or it must be shown that such a point does not exist. In this book
we consider that D is compact and f is a Lipschitz continuous function, therefore
the existence of x� is assured by the well-known theorem of Weierstrass. Since
maximization can be transformed into minimization by changing the sign of the
objective function, we will consider only the minimization problems.

R. Paulavičius and J. Žilinskas, Simplicial Global Optimization,
SpringerBriefs in Optimization, DOI 10.1007/978-1-4614-9093-7__1,
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2 1 Simplicial Partitions in Global Optimization

Classification of global optimization methods was given in [136]:

• Methods with guaranteed accuracy:

– Covering methods

• Direct methods:

– Random search methods
– Clustering methods
– Generalized descent methods

• Indirect methods:

– Methods approximating level sets
– Methods approximating objective function

This book is focused on covering methods for global optimization. These
methods partition the feasible region into subregions of a particular shape. The
partitioning is stopped when the global minimizers are enclosed by small subregions
achieving some prescribed accuracy.

Covering methods can detect and discard the subregions which do not contain
the global minimum. A lower bound for the objective function over a subregion
may be used to indicate the subregions which can be discarded. If guaranteed
bounds are available, covering methods can ensure that a point xopt 2 D is found
such that f .xopt/ differs from f � by no more than a specified accuracy ". Some
covering methods are based on a lower bound constructed as a convex envelope of
an objective function [33,55,77]. Lipschitz optimization is based on the assumption
that the slope of an objective function is bounded [55, 59, 110, 134]. Interval
methods estimate the range of an objective function over a subregion defined by
a multidimensional interval using interval arithmetic [48, 92, 105].

Statistical models [146, 149] or heuristic estimates [83, 152] may also be used
to evaluate subregions. Although guaranteed accuracy is lost in such a case,
global optimization algorithms may be applied to solve “black box” optimization
problems. In the “black box” situation, the values of an objective function are
assumed to be given by an oracle, usually an objective function is given by means
of a computer program and an analytical expression is not known, therefore the
properties of the objective function are difficult to elicit.

A branch-and-bound technique can be used for managing the list of subregions
and the process of discarding and partitioning. An iteration of a classical branch-
and-bound algorithm processes a node in the search tree representing a not yet
explored subregion of the feasible region. Each iteration has three main components:
selection of a node to process, branching of the search tree by dividing the selected
subregion, and pruning of the branches by discarding non-promising subregions.
The rules of selection, branching, and bounding differ from algorithm to algorithm.

A general branch-and-bound algorithm for global optimization is shown in
Algorithm 1. Before the cycle, the feasible region is covered by one or several
partitions whose are added to the list of candidates L.


