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Preface

A functional differential equation (FDE) describes the evolution of a dynamical sys-
tem for which the rate of change of the state variable depends on not only the current
but also the historical and even future states of the system. FDEs arise naturally in
economics, life sciences, and engineering, and the study of FDEs has been a major
source of inspiration for advancement of nonlinear analysis and infinite-dimensional
dynamical systems. Therefore, FDEs provide an excellent theoretical platform for
developing an interdisciplinary approach to understanding complex nonlinear phe-
nomena via appropriate mathematical techniques.

Unfortunately, the study of FDEs is difficult for newcomers, since a background
in nonlinear analysis, ordinary differential equations, and dynamical systems is a
prerequisite. On the other hand, the novelty and challenge of fundamental research
in the field of FDEs has often been underappreciated. This is especially so in our
effort to describe the qualitative behaviors of solutions near equilibria or periodic
orbits: these qualitative behaviors can be derived from those of finite-dimensional
(ordinary differential) systems obtained through a center and center-unstable man-
ifold reduction process, and hence the (local) bifurcation theory that deals with
significant changes in these qualitative behaviors is in principle a consequence of
the corresponding theory for finite-dimensional (ordinary differential) systems. The
highly nontrivial and often lengthy calculation of center manifold reduction, how-
ever, not only leads to enormous duplication of calculation efforts, but also prevents
us from discovering simple and key mechanisms behind observed bifurcation phe-
nomena due to the infinite-dimensionality of FDEs. This, in turn, makes it difficult
to express bifurcation results explicitly in terms of model parameters and to compare
and validate different results. Another challenge is the study of the birth and global
continuation of bifurcation of periodic solutions and the coexistence of multiple
periodic solutions when the parameters are far from the bifurcation/critical values.
There has been substantial progress dedicated to this global bifurcation problem,
and remarkably, the presence of a delayed or advanced argument in the nonlinearity
can sometimes facilitate the application of topological methods such as equivalent
degrees to examine the global continua of branches of periodic solutions, and this
has inspired interesting developments in the spectral analysis of circulant matrices.
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vi Preface

On the other hand, the study of dynamical systems with symmetries has become
well established as a major branch of nonlinear systems theory. The current interest
in the field dates mainly to the appearance of the equivariant branching lemma of
Vanderbauwhede and Cicogna and the equivariant Hopf bifurcation theorem of Gol-
ubitsky and Stewart, both of which are reviewed in the book by Golubitsky, Stewart
and Schaeffer. Since then, important new theories have been developed for more
complex dynamical phenomena, including the existence, stability, and bifurcations
of systems of heteroclinic connections, and the symmetry groups and bifurcations
of chaotic attractors.

To a large extent, the phenomenal growth in the subject has been due to its effec-
tiveness in explaining the bifurcations and dynamical phenomena that are seen in
a wide range of physical systems including coupled oscillators, reaction–diffusion
systems, convecting fluids, and mechanical systems. A local symmetric bifurca-
tion theory for FDEs can be derived from that of but since some special properties
of spatiotemporal symmetry of FDEs may be reflected generically in the reduced
finite-dimensional systems, one can and should make general observations about
the particular bifurcation patterns of symmetric FDEs.

The purpose of this book is to summarize some practical and general approaches
and frameworks for the investigation of bifurcation phenomena of FDEs depending
on parameters. The book aims to be self-contained, so the reader should find in
this book all relevant materials on bifurcation, dynamical systems with symmetry,
functional differential equations, normal forms, and center manifold reduction. This
material was used in graduate courses on functional differential equations at Hunan
University (China) and York University (Canada). We want to thank all students
in these courses for their careful reading and some helpful comments. We would
like especially to thank Dr. Jing Fang and Dr. Xiang-Sheng Wang for their careful
reading of an early version of the manuscript and for their critical comments.

This work was supported in part by the National Natural Science Foundation
(China), the Program for New Century Excellent Talents in University of Ministry
of Education (China), the Research Fund for the Doctoral Program of Higher Edu-
cation of China, the Hunan Provincial Natural Science Foundation, the NCE Cen-
tre Mathematics for Information Technology and Complex Systems, Mprime, the
Canada Research Chairs Program, and the Natural Sciences and Engineering Re-
search Council of Canada.

Changsha, Hunan, China Shangjiang Guo
Toronto, ON, Canada Jianhong Wu
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Chapter 1
Introduction to Dynamic Bifurcation Theory

1.1 Introduction

The change in the qualitative behavior of solutions as a control parameter (or control
parameters) in a system is varied and is known as a bifurcation. When the solutions
are restricted to neighborhoods of a given equilibrium, a bifurcation occurs often
when the zero solution of the linearization of the system at the equilibrium changes
its stability. To illustrate the basic concepts of bifurcation phenomena, we consider
the following continuous dynamical system defined by the Cr (r≥ 1) vector field f :
Λ ×U →R

n:

ẋ = f (μ ,x), μ ∈Λ ⊆ R
m, x ∈U ⊆ R

n, (1.1)

where U and Λ are open sets, x is the state variable, and μ is the (bifurcation)
parameter.

Continuously varying μ may change the qualitative behavior of the solutions
of (1.1). A value μ ∈ Λ for which such a change occurs is called a bifurcation
(critical) value. The set of all bifurcation values is called the bifurcation set in the
parameter space R

m. We may use a bifurcation diagram to schematically show the
considered solutions (equilibria/fixed points, closed orbits/periodic orbits, invariant
tori) of a system as a function of a bifurcation parameter in the system. It is normal to
represent stable solutions with solid lines and unstable solutions with dashed lines.

Local bifurcations are relevant to the birth or initiation of bifurcations when the
bifurcation parameter is close to a bifurcation value. A local bifurcation from a given
solution (an equilibrium, a periodic orbit, etc.) can normally be detected from a local
stability analysis at the given solution. The global bifurcation thereby concerns the
continuation of a local bifurcation when the bifurcation parameter is away from the
bifurcation value.

The bifurcation phenomena is linked closely to the concepts of topological
equivalence, structural stability, and genericity, which are described in the next
section.

S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations,
Applied Mathematical Sciences 184, DOI 10.1007/978-1-4614-6992-6 1,
© Springer Science+Business Media New York 2013
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2 1 Introduction to Dynamic Bifurcation Theory

1.2 Topological Equivalence

In the study of dynamical systems, we are interested in not only specific solutions of
a specific system, but also classification of solutions of a particular system and clas-
sification of systems according to general qualitative behaviors, that is, the number,
position, and stability of equilibria, periodic orbits, and other isolated invariant sets.

In what follows, we will not distinguish a flow and a dynamical system. This
means that we consider a continuous mapping Φ: R×U → U over an open set
U ⊆R

n such that Φ(0,x) = x and Φ(t,Φ(s,x)) = Φ(t +s,x) for t, s ∈R, and x ∈U .
Sometimes, we write it as Φt := Φ(t, ·): U →U for t ∈ R.

We consider two dynamical systems to be (locally) equivalent if their (local)
phase portraits are similar in a qualitative sense, that is, if they can be locally
transformed into each other through a continuous transformation. More precisely,
we introduce the following definition.

Definition 1.1. A dynamical system Φ in R
n is said to be topologically equivalent

in a region U ⊂ R
n to a dynamical system Ψ in a region V ⊂ R

n if there exists a
homeomorphism h: U → V that maps the orbits of Φ in U onto the orbits of Ψ in
V , preserving the direction of time.

A homeomorphism is an invertible map such that both the map and its inverse
are continuous. A homomorphism is called a diffeomorphism if it is C1-smooth
and its inverse is also C1-smooth. The definition of topological equivalence can be
generalized to cover more general cases in which the state space is a complete met-
ric or, in particular, a Banach space. The definition also remains meaningful when
the state space is a smooth finite-dimensional manifold in R

n, for example, a two-
dimensional torus T2 or sphere S

2. The phase portraits of topologically equivalent
systems are often said to be topologically equivalent.

Example 1.1. Consider the flows Φt and Ψ t associated with the differential
equations

ẋ =−x and ẏ =−3y,

respectively. The homeomorphism h: R→R given by h(x) = x3 for x ∈R maps the
orbits of Φ onto those of Ψ .

Definition 1.2. Two flows Φt (on U) and Ψ t (on V ) are called topologically
conjugate if there exists a homeomorphism h: U →V such that

Ψ t = h ◦Φt ◦ h−1 for t ∈ R.

We also use the term smoothly conjugate (or diffeomorphic) if the involved homeo-
morphism is a diffeomorphism and the flows are smooth.

For example, for a continuous-time system

ẋ = f (x), x ∈ R
n, (1.2)
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if h is a diffeomorphism from R
n to R

n, and x = h(y), then the system

ẏ = g(y), y ∈ R
n (1.3)

with g(y) = [Dh(y)]−1 f (h(y)) for all y ∈ R
n is smoothly equivalent (or diffeomor-

phic) to system (1.2). In fact, denoting by Φt (x) the flow associated with system
(1.2), and letting Ψ t(y) = h−1(Φt (h(y))), we have

Dh(Ψ t(y))
d
dt

Ψ t(y) = f (Φt (h(y))),

and so
d
dt

Ψ t(y) = [Dh(Ψ t(y))]−1 f (Φt (h(y))) = g(Ψ t(y)),

which implies that Ψ t(y) is the flow associated with system (1.3). Therefore,
systems (1.2) and (1.3) are smoothly equivalent (or diffeomorphic).

In what follows, if the degree of smoothness of h is of interest, we also use the
term Ck-equivalent or Ck-diffeomorphic.

Two diffeomorphic systems are practically identical and can be viewed as the
same system written using different coordinates. Two diffeomorphic systems have
similar qualitative behaviors. For such systems, the eigenvalues of corresponding
equilibria are the same: Let x0 and y0 = h(x0) be such equilibria and let A(x0) and
B(y0) denote corresponding Jacobian matrices. Then we have

A(x0) = M−1(x0)B(y0)M(x0),

where M(x) = Dh(x). Therefore, the characteristic polynomials for the matrices
A(x0) and B(y0) coincide.

It is easy to construct nondiffeomorphic but topologically equivalent flows.
To see this, consider a smooth scalar position function μ : Rn→ (0,∞) and assume
that the right-hand sides of (1.2) and (1.3) are related by

f (x) = μ(x)g(x) for x ∈ R
n. (1.4)

Then systems (1.2) and (1.3) are topologically equivalent since their orbits are
identical, and it is the velocity of the motion that makes them different. Thus,
the homeomorphism h in Definition 1.1 is the identity map h(x) = x. In other
words, these two systems are distinguished only by the time parameterization along
the orbits. We say that two systems (1.2) and (1.3) satisfying (1.4) for a smooth pos-
itive function μ are orbitally equivalent. Usually, two orbitally equivalent systems
can be nondiffeomorphic, having cycles that look like the same closed curve in the
phase space but different periods. For example, the system

ṙ = r(1− r), θ̇ = 1

and the system

ρ̇ = 2ρ(1−ρ), ϕ̇ = 2
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in R
2 using polar coordinates are topologically equivalent, but not topologically

conjugate, because their periodic orbits r = 1 and ρ = 1 have periods 2π and π ,
respectively.

Let x0 be an equilibrium of the system (1.2), that is, f (x0) = 0, and let A denote
the Jacobian matrix D f (x) evaluated at x = x0. Let n−, n0, and n+ be the numbers
of eigenvalues of A (counting multiplicities) with negative, zero, and positive real
part, respectively. Recall that an equilibrium is called hyperbolic if n0 = 0, that
is, if A has no purely imaginary eigenvalues. A hyperbolic equilibrium is called a
hyperbolic saddle if n−n+ �= 0.

Topological equivalence of linear systems is generally easy to determine. If the
linearized flow near an equilibrium is asymptotically stable, then the equilibrium
is asymptotically stable. Moreover, two asymptotically stable n-dimensional linear
flows are topologically equivalent.

Example 1.2. Consider two linear planar systems:

ẋ =−x, ẏ =−y, (1.5)

and

ẋ =−x− y, ẏ = x− y. (1.6)

Clearly, the origin is a stable equilibrium in both systems. All other trajectories
of (1.5) are straight lines, while those of (1.6) are spirals. The equilibrium of
the first system is a node, while in the second systems it is a focus. These two
systems are neither orbitally nor smoothly equivalent. However, they are topologi-
cally equivalent.

We can further claim that near a hyperbolic equilibrium p, the system behaves
essentially like the linearized one. In other words, Φt is topologically equiva-
lent to eD f (p)t in a sufficiently small neighborhood of a hyperbolic equilibrium p
(Grobman–Hartman theorem). See Grobman [123], Hartman [161, 162], Hirsch
[163], Hale and Kocak [152] for details. As a result, determining topological equiv-
alence near hyperbolic equilibria boils down to counting the dimensions of the local
stable and unstable subspaces (manifolds).

Theorem 1.1. Two systems of differential equations with hyperbolic equilibria are
topologically equivalent near these equilibria if and only if their linearizations have
the same number n+ of eigenvalues with positive real parts and the same number
n− of eigenvalues with negative real parts.

1.3 Structural Stability

There are dynamical systems whose phase portrait (in some domain) does not
change qualitatively under all sufficiently small perturbations. For example, suppose
that (1.1) has an equilibrium x0 when μ = μ0, that is,

f (μ0,x0) = 0. (1.7)


