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Foreword

Recent advances in structural technology require greater accuracy, efficiency and
speed in the analysis of structural systems, referred to as Optimal Analysis of
Structures Using Concepts of Symmetry and Regularity. It is, therefore, not
surprising that new methods have been developed for the analysis of structures
with a large number of nodes and members.

The requirement of accuracy in analysis has been brought about by the need for
demonstrating structural safety. Consequently, accurate methods of analysis had to
be developed, since conventional methods, although perfectly satisfactory when
used on simple structures, have been found inadequate because of the requirement
of high computational effort for large-scale structures. Another reason why greater
accuracy is required is the need to achieve efficient and optimal use of the material,
i.e. optimal design.

In this book, different mathematical concepts are combined to make the optimal
analysis of structures feasible. Canonical forms from matrix algebra, product
graphs from graph theory and symmetry groups from group theory are some of
the concepts involved in the variety of efficient methods and algorithms presented.

The methods and algorithms elucidated in this book enable the analysts to handle
large-scale structural systems by lowering their computational cost fulfilling the
requirement for faster analysis and design of future complex systems. The value of
the presented methods becomes all the more evident in cases where the analysis
needs to be repeated hundreds or even thousands of times, as is the case with the
optimal design of structures using different meta-heuristic algorithms.

This book is of interest to all those engaged in computer-aided analysis and
design, and also to software developers in this field. Though the methods are
illustrated mainly through skeletal structures, however, some continuum models
have also been added to show the generality of the methods. The concepts presented
in this book are not only applicable to different types of structures, but can equally
be used for the analysis of other systems, such as hydraulic and electrical networks.

The author has been involved in various developments and applications of graph
theory in the last four decades. The present book contains part of this research,
suitable for various aspects of matrix structural analysis.



vi Foreword

The present book is intended to serve as a textbook for the optimal analysis of
large-scale structures utilising concepts of symmetry and regularity. Special atten-
tion is focused on efficient methods for eigensolution of matrices involved in static,
dynamic and stability analyses of symmetric and regular structures, or those general
structures containing such components. Powerful tools are also developed for
configuration processing, which is an important issue in the analysis and design
of space structures and finite element models.

The book is written in an attractive dynamic style that immediately goes to the
heart of each subtopic. The many worked out examples will help the reader to
appreciate the theory. The book is likely to be of interest to pure and applied
mathematicians who use and teach graph theory as well as to students and
researchers in structural engineering and architecture.

Vienna University of Technology Professor Emeritus
Austria Dr. Dr. h.c. Franz Ziegler



Preface

Concepts from different fields of mathematics are combined to obtain powerful
tools and algorithms for efficient analysis of structures. Many structures are either
symmetric or regular, and some others can be made symmetric or regular by
addition or elimination of a small number of nodes and/or members. For these
structures, the matrices have canonical forms and the corresponding equations can
easily be solved using some concepts from matrix algebra, linear algebra, graph
theory, and group theory.

The methods and algorithms developed in this book make the analysis of large-
scale structures possible by reducing their computational time and storage, fulfilling
the requirements for a faster analysis of complex systems. The power of the
presented methods becomes more evident when analysis needs to be repeated
many times, as is the case with optimum design of structures utilizing different
meta-heuristic algorithms.

The author has been involved in various developments and applications of graph
theory in the last four decades. The present book contains part of this research,
suitable for matrix analysis of symmetric and regular structures.

Methods of this book can efficiently be used in computer-aided analysis and
design, and commercial software developments. Though these methods are mainly
illustrated through skeletal structures, some continuum models have also been
included to show the generality of the algorithms.

The present book is intended to serve as a textbook for the optimal analysis of
large-scale structures utilising concepts of symmetry and regularity. Special atten-
tion is focused on efficient methods for eigensolution of matrices involved in static,
dynamic and stability analyses of symmetric and regular structures, or those general
structures containing such components. Powerful tools are also developed for
configuration processing, which is an important issue in the analysis and design
of space structures and finite element models.

In Chap. 1, an introduction is provided to the definitions and basic concepts of
symmetry and regularity. Chapter 2 presents a background of the mathematics
extensively used in this book, consisting of definitions from graph theory and
algebraic graph theory. Standard definitions of graph products and their extensions
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are provided in Chap. 3 and utilised in the important topic of configuration processing
of structures. Basic definitions of canonical forms and their properties involved in
symmetric and regular structures are discussed in Chap. 4. The canonical forms are
applied to two important combinatorial optimisation problems consisting of nodal
ordering to improve the patterns of the structural matrices, and graph partitioning for
use in parallel computing in Chap. 5. Chapter 6 utilises graph products for similar
purposes as in the previous chapter. Canonical forms have important applications in
structural mechanics. These applications are discussed in Chap. 7. Graph products
make the efficient analysis of regular structures feasible, providing closed-form
solutions for this purpose as discussed in Chap. 8. Some structural models are not
regular but can be made regular by adding and/or deleting of some members.
Chapter 9 contains efficient methods for eigensolution and analysis of such structures
using direct methods. Iterative methods for similar purposes are presented in
Chap. 10. Group theory is known as the language of symmetry. Basic concepts and
applications of group theory are discussed in Chap. 11. Finally, the interrelation of
canonical forms, graph products and group theory and their applications to the
analysis of symmetric-regular structures are presented in Chap. 12.

I would like to take this opportunity to acknowledge a deep sense of gratitude to
a number of colleagues and friends who in different ways have helped in the
preparation of this book. Mr. J.C. de C. Henderson, formerly of Imperial College
of Science and Technology, first introduced me to the subject with most stimulating
discussions on various aspects of topology and combinatorial mathematics. Professor
F. Ziegler encouraged and supported me to write this book. My special thanks are due
to Mrs. Silvia Schilgerius, the senior editor of the applied sciences of Springer, for her
constructive comments, editing and unfailing kindness in the course of the prepara-
tion of this book. My sincere appreciation is extended to our Springer colleagues
Mr. C. Bachem and Ms. G. Umamaheswari.

I would like to thank my former Ph.D. and M.Sc. students, Dr. H. Rahami,
Dr. H. Fazli, Dr. M. Nikbakht, Dr. K. Koohestani, Dr. M.A. Sayarinejad,
Dr. B. Salimbahrami, Dr. L. Shahryari, Dr. M. Nouri, Dr. H.A. Rahimi Bonderabady,
Mr. H. Mehanpour, Mr. F. Nemati and Mr. S. Najafian and Mr. S. Beheshti, for
permitting me to use our joint papers and for their help in various stages of writing
this book. I would like to thank the publishers who permitted some of our papers to
be utilised in the preparation of this book, consisting of Springer Verlag, John Wiley
and Sons, and Elsevier.

My warmest gratitude is due to my wife, Mrs. Leopoldine Kaveh, for her
continued support in the course of preparing this book and my son, Mr. Babak
Kaveh, for proof reading.

Every effort has been made to render the book error free. However, the author
would appreciate any remaining errors being brought to his attention through the
following email address: alikaveh@jiust.ac.ir.

Tehran, Iran A. Kaveh
January 2013
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