K. Subramanya Sastry

Plant Virus and Viroid Diseases in the Tropics

Volume 1: Introduction of Plant Viruses and Sub-Viral Agents, Classification, Assessment of Loss, Transmission and Diagnosis

K. Subramanya Sastry

Plant Virus and Viroid Diseases in the Tropics

Volume 1: Introduction of Plant Viruses and Sub-Viral Agents, Classification, Assessment of Loss, Transmission and Diagnosis

Plant Virus and Viroid Diseases in the Tropics

K. Subramanya Sastry

Plant Virus and Viroid Diseases in the Tropics

Volume 1: Introduction of Plant Viruses and Sub-Viral Agents, Classification, Assessment of Loss, Transmission and Diagnosis

K. Subramanya Sastry Department of Virology SV University Tirupathi, Andhra Pradesh India

ISBN 978-94-007-6523-8 ISBN 978-94-007-6524-5 (eBook) DOI 10.1007/978-94-007-6524-5 Springer Dordrecht Heidelberg New York London

Library of Congress Control Number: 2013933113

© Springer Science+Business Media B.V. 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

The detection of a *contagium vivum fluidum* associated with a *mosaic* disease of tobacco in Europe at the close of the nineteenth century, was the beginning of a century of major achievements in the advancement of biological sciences. The demonstration in 1937 that *Tobacco mosaic virus* (TMV), was a nucleoprotein, and that its nucleic acid (RNA), contained the genetic information necessary to induce disease in tobacco, set the stage for the advent of genetics, molecular biology, transgenic technology, and the use of viruses as molecular tools. The physicochemical characterization of TMV also lead to the diffusion of modern technologies, such as virus purification (centrifugation), immunology, electrophoresis, electron microscopy, protein and nucleic acid sequencing, and atomic structure of nucleoproteins (X-ray analysis). These developments would eventually make a major contribution to the understanding of the structure of DNA by Watson and Crick in 1953. Finally, these breakthroughs then paved the way to the advent of Molecular Biology, bringing about the greatest revolution in the multiple fields of biological sciences.

However, TMV had a humble origin in the lowlands of tropical South America, where tobacco had been cultivated by the native societies, until the Spanish conquistadores turned it into a commercial export commodity during colonial times. In the nineteenth century, tobacco was being widely grown in Europe as a medicinal plant and, consequently, the stage was set for the emergence of one of the first global epiphytotics of a highly contagious plant virus. In 1887, Dmitri Ivanovsky was sent from the University of Saint Petersburg, the imperial capital of Russia, to investigate a disease affecting tobacco plantations in Ukraine. In 1892, Ivanovsky demonstrated that the causal agent was not excluded by a porcelain filter capable of retaining bacteria, the only known microbial pathogen at that time. In 1898, Martinus Beijerinck confirmed Ivanovsky's observations in The Netherlands and, thus, the science of Plant Virology was born.

Despite the significant progress made in plant virology in the twentieth century, the detection and characterization of many plant viruses of economic importance remained elusive until the 1980s, particularly in the Tropics, where plant virology facilities were non-existent or very poorly equipped due to the difficult nature of plant viruses (non-culturable) and lack of the expensive equipments needed to characterize these pathogens up to that decade. Consequently, the early plant virologist had to be thoroughly trained in the various fields of the agricultural sciences: agronomy, genetics, plant breeding, plant physiology, epidemiology, entomology, and plant pathology, in order to manage the viral diseases of crops, often without knowing the causal agent. The advent of molecular biology and the application of molecular techniques, such as the Polymerase Chain Reaction (PCR), to the detection and characterization of plant viruses possessing RNA or DNA genomes, completely changed the field of Plant Virology in the 1980s. All of the sudden, plant virologists only needed partial nucleic acid sequences and a relatively inexpensive PCR machine to detect and identify plant viruses, without the need to visualize, purify, conduct serological assays, or undertake lengthy and complex physicochemical assays to characterize plant viruses. All that was needed to identify viruses was a suitable pair of primers (a strand of nucleic acid that serves as a starting point for DNA synthesis) to obtain partial or total viral genome sequence data to compare to reported viral sequences freely available in databases such as GenBank.

The adoption of molecular techniques not only facilitated research on plant viruses, but it also changed agricultural education and research in areas of critical importance to the science of Plant Virology. Advances in tissue culture techniques, molecular markers, and the genetic manipulation of plant genomes rapidly shifted the attention from traditional plant breeding and traditional virus screening techniques to the promise of selection of virus resistant plant genotypes in molecular biology laboratories using molecular markers. More important, acquiring a basic knowledge in agricultural sciences was no longer required. Instead, a new generation of molecular biologists was formed to deal with any phytopathological problem regardless of the causal organism, be it a fungus, bacterium, or virus. Thus, the new virologist is usually a molecular biologist who chose to work with plant viruses, without former training in agricultural sciences.

Whereas the science of Plant Virology has immensely benefited from the adoption of the new molecular techniques; and conducting plant virus research without a basic working knowledge of molecular biology is no longer possible or desirable in this new millennium, the new generation of molecular virologists need to know the foundations of Plant Virology. Basically, the science of plant pathology, the agronomy of the plant species affected, and the genetic interaction of plant viruses with their plant hosts and vectors. Finally, any virologist must understand how plant viruses are disseminated in nature, and the various control measures available to manage the viral diseases of economically important food and industrial crops. Hence, the importance of a comprehensive book like this one written by Dr. K. Subramanya Sastry, presented in different volumes which describe the nature of plant viruses and viroids, their classification and identification, and the main viral and viroids pathogens that affect food production in the most challenging and dynamic agricultural system in the world: the Tropics.

The virus detection techniques described are completely up-to-date, including the latest molecular techniques developed in the world for the detection and characterization of viruses and viroids in general. The interested readers, professors, and students of agricultural sciences, and specially plant pathologists, will find this publication a complete source of information on the science of Plant Virology in the Tropics.

Francisco J. Morales Former Head Plant Virology Laboratory Emeritus Scientist International Centre for Tropical Agriculture Palmira, Valle, Columbia

Preface

Virus and viroid diseases have become increasingly important constraints to sustainable crop production in the tropical countries. The climatic changes that are occurring throughout the world have impact on plants, vectors, and viruses causing increasing instability within virus–host ecosystems. Some of the threatening and economically important virus diseases in tropical zone which affect the food production are tungro, yellow mottle, and hoja blanca in rice; mosaic in sugarcane, mosaic in cassava; tristeza in citrus; swollen shoot in cacao; sterility mosaic in pigeonpea; rosette, clump, and bud necrosis in peanut; necrosis in sunflower and legumes, vegetables, and ornamental crops; yellow mosaic in legumes; leaf curl in cotton and tomato; and ring spot in papaya. Key factors for emergence of new plant virus and virus-like diseases include the intensification of agricultural trade (globalization), changes in cropping systems (crop diversification), and climate change.

Largest group of plant viruses exist in the family *Potyviridae* followed by *Geminiviridae* and *Bunyaviridae*. In tropical countries, whitefly transmitted begomoviruses are responsible for heavy crop losses in cassava, cotton, tobacco, tomato, potato, pepper, squash, okra. etc. The tospo- and ilarviruses are wide spread in tropics and affect several important field, horticultural and ornamental crops resulting in serious economic damage in crops like groundnut, sunflower, onion, watermelon, and vegetables like tomato, chillies, and potatoes. Divergence exists in the type of vectors and their population from country to country, for example Hemipterans (aphids, whiteflys, leafhoppers, mealybugs, and others) are the major vectors of plant virus and virus like diseases, comprising more than 80 % of insect-transmitted viruses which represents close to 400 virus species within 39 different genera.

The primary aim of this book is to provide to readers with latest information on different virus and viroid diseases of crops in tropical countries. This volume comprises of five chapters that give an overview of the progress made on virus and viroid diseases of crops of tropics. The first chapter deals with general information on tropics and climate, tropical countries and tropical agriculture; second chapter provides information on viruses, viroids, phytoplasma, and other subviral agents; third chapter on impact of virus and viroid disease on tropical crops; the fourth chapter on various modes of transmission of virus and virus-like agents. Various methods for detection and diagnosis of viruses and viroid disease of tropical crops are extensively reviewed in the fifth chapter.

Since the inception of plant virology, phytoplasma is dealt along with plant viruses, hence a few pages were devoted in this book for providing background information about phytoplasma for traditional scientists/researchers. Even though the attempt is only to include the examples from tropical zone but it was not possible to confine to tropical examples as successful research outcomes are there from temperate zone; hence, some examples from temperate zone were also referred. If any omissions have occurred inadvertently in seeking permissions for figures and tables, it may please be condoned.

It is hoped that the information provided in this volume on various aspects of virus and viroid diseases of tropical crops would be useful to research scientists, seed companies, quarantine personnel, and institutions of both research and teaching.

K. Subramanya Sastry

Acknowledgments

To bringout the two volumes on "Plant Virus and Viroid Diseases in the Tropics", a large number of plant virologists of both National and International have immensely helped. I have been benefited by the critical suggestions and comments made by Dr. G. P. Rao, Dr. M. Hema, Dr. C. I. Chacko, Prof. Jawaid Khan, Prof. P. Anandakumar, Dr. P. Lavakumar, D. D. R. Reddy, Dr. B. Viswanath, Dr. K. Vemana, Dr. SK Raj, Dr. K Bikas Mandal, Prof. H. R. Pappu, Dr. R. A. Naidu, Dr. A. M. Anthony Johnson, Dr. D. C. Sastri, Prof. S. M. H. Khurana, Dr. S. E. Albrechtsen, Dr. R. Selvarajan, Dr. G. Nagaraja and others. The single person who has taken all the brunt and hardship in finalizing the manuscript is Prof. P. Sreenivasulu, Former Head of the Department of Plant Virology, SV University, Tirupathi (India) and I record appreciation for his sincere hard work and devotion to the plant virology subject. I am highly indepted to late Prof. M. V. Nayudu, my mentor, who has introduced me to plant virology subject. I profusely thank my friend Dr. D. V. R. Saigopal, Head of the Department of Plant Virology, SV University, Tirupathi, for providing me space in the department, timely guidance, and critically going through all the chapters. I am highly grateful to Prof. T. A. Zitter and Prof. F. J. Morales for providing suitable suggestions and modifications for the improvement of the text. I thank Elsevier, CABI, Springer, and other publishers for providing permission for using the illustrations and photographs from their earlier publications. Throughout preparation of the volume 1, Mr. C. Nagaraja has devoted maximum time in computerizing the book for which the author is highly indebted. My wife B. N. K. Kumari and my family members K. Sreedhar, M. Padmavathi, and M. Muralidhar for their ever-lasting love, for their ceaseless support, and were my constant companions during the course of preparation of the books. The meticulous care taken by staff of Springer publishers in bringing out this publication at an early date with nice getup of the book is gratefully appreciated and acknowledged.

I dedicate this book to the memory of my parents late K. Panduranga Sastry and Smt. K. Subadramma who have sacrificed everything to give me the best education possible and for their eternal blessings.

K. Subramanya Sastry

Acronyms

A1MV	Alstroemeria mosaic virus
ABMV	Azuki bean mosaic virus
AbMV	Abaca mosaic potyvirus
AbMV	Abutilon mosaic virus
ACLSV	
	Apple chlorotic leaf spot
ACMV	African cassava mosaic virus
AGVd	Australian grapevine viroid
AMV	Alfalfa mosaic virus
APLV	Andean potato latent virus
ApMV	Apple mosaic virus
ArMV	Arabis mosaic virus
ARSV	Apple ring spot virus
ASBVd	Avocado Sunblotch viroid
ASGV	Apple stem grooving virus
ASPV	Apple stem pitting virus
ASSVd	Apple scar skin viroid
AYRSV	Artichoke yellow ring spot virus
BaMMV	Barley mild mosaic virus
BaMV	Bamboo mosaic virus
BaYMV	Barley yellow mosaic virus
BBMV	Broad bean mottle virus
BBrMV	Banana bract mosaic virus
BBSV	Broad bean stain virus
BBTMV	Broad bean true mosaic virus
BBTV	Banana bunchy top virus
BBWV	Broad bean wilt virus
BCaMV	Bean calico mosaic virus
BCMNV	Bean common mosaic necrotic virus
BCMV	Bean common mosaic virus
BCTV	Beet curly top virus
BDBV	Banana dieback virus
BDMV	Bean dwarf mosaic virus
BGMV	Bean golden mosaic virus

Bean golden yellow mosaic vir	us
Black eye cowpea mosaic viru	5

BGIMV	Bean golaen yellow mosaic virus
BICMV	Black eye cowpea mosaic virus
BLMV	Blue berry leaf mottle virus
BLRV	Bean leaf roll virus
BlShV	Blueberry Shock Ilarvirus
BMCTV	Beet mild curly top virus
BMoV	Blackgram mottle virus
BMV	Brome mosaic virus
BMYV	Beet mild yellowing virus
BNYV	Broccoli necrotic yellows virus
BNYVV	Beet necrotic yellow vein virus
BPMV	Bean pod mottle virus
BRSV	Beet ringspot virus
BSGFV	Banana streak GF virus
BSMV	Barley stripe mosaic virus
BSMV	Beet stripe mosaic virus
BSMyV	Banana streak Mysore virus
BSOLV	Banana streak OL virus
BSUgIV	Banana streak Uganda I virus
BSUgLV	Banana streak Uganda L virus
BSUgMV	Banana streak Uganda M virus
BSV	Banana streak virus
BtMV	Beet mosaic virus
BWYV	Beet western yellows virus
BYDV	Barley yellow dwarf virus
BYMV	Bean yellow mosaic virus
BYSV	Bean yellow stipple virus
BYSV	Beet yellows stunt virus
BYV	Beet yellows virus
BYVMV	Bhendi yellow vein mosaic virus
CABMV	Cowpea aphid borne mosaic virus
CaCV	Capsicum chlorosis virus
CaMV	Cauliflower mosaic virus
CarMV	Carnation mottle virus
CBDV	Colocasia bobone disease virus
CBMV	Common bean mosaic virus
CbMV	Calibrachoa mottle virus
CBRV	Cabbage black ring virus
CBSV	Cassava brown streak virus
CBSUV	Cassava brown streak Uganda virus
CbVd-1	Coleus blumei viroid 1
CbVd-2	Coleus blumei viroid 2

BGYMV

Acronyms

CCCVd	Coconut cadang–cadang viroid
CChMVd	Chrysanthemum chlorotic mottle viroid
CCMV	Cowpea chlorotic mottle virus
CCSV	Cucumber chlorotic spot virus
CCSV	Calla lily chlorotic spot virus
CCSV	Cassava Colombian symptomless virus
CdMV	Cardamom mosaic virus
CeMV	
	Celery mosaic virus
CEVd	Citrus exocortis viroid
CFDV	Coconut foliar decay virus
CFMMV	Cucumber fruit mottle mosaic virus
CFSV	Cassava frogskin virus
CGMMV	Cucumber green mottle mosaic virus
CGMV	Cassava green mottle virus
ChiLCV	Chilli leaf curl virus
CIBV	Cassava ivorian bacilliform virus
CiLV	Citrus leprosis virus
CiMV	Citrus mosaic virus
CiTLV	Citrus tatter leaf virus
CIVV	Citrus infectious variegation virus
CLCrV	Cotton leaf crumple virus
CLCuAV	Cotton leaf curl Allahabad virus
CLCuBV	Cotton leaf curl Bangalore virus
CLCuBuV	Cotton leaf curl Burewala virus
CLCuKV	Cotton leaf curl Kokhran virus
CLCuMV	Cotton leaf curl Multan virus
CLCuRV	Cotton leaf curl Rajasthan virus
CLCuV	Cotton leaf curl virus
CLRV	Cherry leaf roll virus
CLVd	Columnea latent viroid
CIYMV	Clover yellow mosaic virus
CIYVV	Clover yellow vein virus
CMBV	Citrus mosaic badnavirus
CMDV	
	Carrot mottley dwarf virus
CMV	Cucumber mosaic virus
CNV	Cocao necrosis virus
CoYMV	Commelina yellow mottle virus
CpBMV	Cowpea banding mosaic virus
CpCDV	Chickpea chlorotic dwarf virus
CpCSV	Chickpea chlorotic stunt virus
CPFVd	Cucumber pale fruit viroid
CpGMV	Cowpea golden mosaic virus
CpMMV	Cowpea mild mottle virus
CPMoV	Cowpea mottle virus
CpMV	Cowpea mosaic virus

CPSMV	Cowpea severe mosaic virus
CPsV	Citrus psorosis virus
CRSV	Citrus ring spot virus
CsALV	Cassava American latent virus
CsCMV	Cassava common mosaic virus
CSNV	Chrysanthemum stem necrosis virus
CSSV	Cocoa swollen shoot virus
CSVd	Chrysanthemum stunt viroid
CsVX	Cassava virus X
CTLV	Carrot thin leaf virus
CTV	Citrus tristeza virus
CuNV	Cucumber necrosis virus
CVMV	Cassava vein mosaic virus
CVMV	Chilli veinal motile virus (Syn. Pepper vein banding mosaic
e vini v	virus)
CVV	Citrus variegation virus
CVYV	Cucumber vein yellowing virus
CymMV	Cymbidium mosaic virus
CymRSV	Cymbidium ringspot virus
CYMV	Chicory yellow mottle virus
CYMV	Citrus yellow mosaic virus
CYSDV	Cucurbit yellow stunt disorder virus
DAV	Dapple apple virus
DBV	
DoYMV	Dioscorea bacilliform virus Dolichos yellow mosaic virus
DsMV	Dasheen mosaic virus
EACMCV	
	East African cassava mosaic Cameroon virus
EACMV	East African cassava mosaic virus
ELCV	Enation leaf curl virus
EMDV	Eggplant mottled dwarf virus
EMV	Eggplant mosaic virus
FBNYV	Faba bean necrotic yellows virus
FLNV	Freesia leaf necrosis virus
GBLV	Grapevine Bulgarian latent virus
GBNV/PBNV	Groundnut bud necrosis virus
GFkV	Grapevine fleck virus
GFLV	Grapevine fan leaf virus
GLRaV-1	Grapevine leafroll-associated virus-1
GLRaV-2	Grapevine leafroll-associated virus-2
GLRaV-3	Grapevine leafroll-associated virus-3
GLRV	Grapevine leafroll virus
GMMV	Gayfeather mild mottle virus
GRSPaV	Grapevine rupestris stem pitting-associated virus
GRSV	Groundnut ringspot virus
GRV	Groundnut rosette virus