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v

 The rapidly developing fi eld of engineered nanomaterial has expanded in 
many commercial areas. More recent studies have begun to provide a founda-
tion for understanding how nanomaterials infl uence cells and how they also 
can serve as methodological tools for studies in medicine and cell biology. At 
the cellular level, recent investigations have shown the effects of nanomateri-
als on specifi c subcellular structures, such as the actin-based brush border 
network in cells with an increasing emphasis on the barrier function of epi-
thelial tissues, while other studies have shown involvement of nanomaterials 
in specifi c cytoplasmic signal transduction events such as the rise in intracel-
lular free calcium, a signaling event known to regulate many changes in cell 
architecture and function. In parallel, nanomaterials are increasingly used in 
medicine for drug delivery, treatment of cancer, and an increasing number of 
new applications. In this regard the subject of nanomaterial crosses disciplin-
ary boundaries between medicine, biology, and engineering, and this has 
resulted in some of the advances and implications being over overlooked. 
One of the intentions of this book is to bring this diverse area into sharper 
focus. 

 Nanomaterials are used in medicine in a variety of ways including cancer 
targeting and ablation. They can also target cells through modifi cation of their 
surface chemistry, and because of this are used as tools for drug delivery. 
They have been used for tissue contrast enhancement and as wavelength- 
specifi c probes for fl uorescent imaging. Nanomaterials have also been 
employed to track stem cells as well as to alter their state of commitment. The 
usage of nanomaterials has become so common that they are present in a 
number of consumer products. This book presents chapters, from a variety of 
experts, in areas relevant to cell biology and medicine in order to demonstrate 
the breadth of applications. 

 This book was written for advanced undergraduates in cell biology, engi-
neering, and medical professionals. Most chapters have different but relevant 
methods sections that explain key technological manipulations. Every attempt 
was made to make these sections practical and understandable, but with 
enough information in each chapter to be of interest to researchers as well.  

    Tempe, AZ, USA  David     G.     Capco   
   Atlanta, GA, USA  Yongsheng     Chen    
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    Abstract 

 Widespread use of engineered nanomaterials 
(ENMs) in consumer products has led to con-
cerns about their potential impact on humans 
and the environment. In order to fully assess 
the impacts and release of ENMs from con-
sumer products, this chapter provides an over-
view of the types of consumer products that 
contain nanomaterials, the potential release 
mechanisms of these ENMs from consumer 
products, and the associated human expo-
sure. Information from two large datasets 
on consumer goods associated with ENMs, 
namely, the U.S.-based Project for Emerging 
Nanotechnologies from the Woodrow Wilson 
International Center, and the European-based 
National Institute for Public Health and the 
Environment of Netherlands, have been sum-
marized. These databases reveal that silver, 
titanium, carbon-based ENMs are the major 
nanomaterials associated with consumer 
products. The presence and potential release 
of silver, titanium, carbon-based, and other 
nanomaterials from consumer goods available 
in published literature are also summarized, 
as well as the potential human exposure sce-
narios of inhalation, ingestion, dermal, and 
combination of all means. The prospecting of 
nanomaterial in water and biosolids provides 
further evidence of ENM occurrence, which 
could be linked to the use of nanomaterials 
containing consumer goods. Finally, this over-
view provides guidelines on toxicity studies, 
which calls for further efforts to analyze the 

        Y.   Yang       (*) •     P.   Westerhoff    
  Civil, Environmental and Sustainable Engineering, 
School of Sustainable Engineering and the Built 
Environment, Arizona State University , 
  Tempe ,  AZ   85287-5306 ,  USA   
 e-mail: yu.yang.2@asu.edu  

  1      Presence in, and Release 
of, Nanomaterials from Consumer 
Products 

              Yu     Yang      and     Paul     Westerhoff   

Contents

1.1  Introduction ................................................  2

1.2  Categorization of Consumer Products 
with Nanomaterials from Databases ........  3

1.3  Occurrence and Potential Exposure 
of Major Nanomaterials in 
Consumer Goods ........................................  5

1.3.1  Presence and Release of Nanosilver 
in Consumer Products ..................................  5

1.3.2  Use and Release of Carbon- Based 
Nanomaterials in Consumer Goods .............  7

1.3.3  Occurrence of Titanium Dioxide 
Nanoparticles in Food and Personal
 Care Products ..............................................  8

1.3.4  The Use and Release of Other 
Nanomaterials ..............................................  9

1.4  Prospecting Nanomaterials 
in the Environment .....................................  9

1.4.1  Detection of ENMs in Water by Single 
Particle ICP-MS ...........................................  9

1.4.2  Occurrence of ENMs in Biosolids 
of Wastewater Treatment Plants ...................  12

1.5  Summary and Conclusions ........................  14

References ...............................................................  14

mailto:yu.yang.2@asu.edu


2

biological effects of ENMs on human beings 
and their exposure pathways in consumer 
products.  

  Keywords 

 Engineered nanomaterials   •   Presence   •   Release   
•   Consumer products   •   Nanosilver   •   Titanium   
•   Carbon  

1.1         Introduction 

 Nanomaterials are typically defi ned as having 
“internal or surface structures in one or more 
dimensions in the size range 1–100 nm” [ 1 ]. 
Metallic and carbon-based nanomaterials, in par-
ticular, are comprised of novel physicochemical 
properties, and because of their small size and 
high surface-area-to-volume ratio are viewed dif-
ferently than their bulk material. Over the past 
two decades, the clear advantages in using nano-
materials for consumer products have led to a new 
stage in nanotechnology development [ 2 ]. This, in 
turn, has fueled a dramatic growth in the nano-
technology industry, from a $10 billion enterprise 
in 2012 to an anticipated up to $1 trillion by 2015 
[ 3 ]. As these industries continue to create prod-
ucts with unique elements and geometries, the 
human and ecological risks stemming from engi-
neered nanomaterials (ENMs) may increase as a 
result of potential hazards [ 4 ]. Evaluating these 
risks, therefore, necessitates development of new 
tools and models that are better able to assess both 
exposure levels and toxicity of nanomaterials. 
This chapter focuses on strategies to quantify the 
presence of major classes of ENMs in consumer 
products and their release into water or air after 
use. ENMs include nano-silver, titanium dioxide, 
and carbon based nanomaterials. 

 Nanotechnology advances that have taken 
place in different disciplines over the years have 
led to widespread ENM applications in many 
everyday products. Nano silver (nano Ag), for 
instance, has been used in pesticide, medicine, 
socks, fabrics, or disinfectant sprays [ 5 – 7 ]. 
Colloidal silver is known to have been employed 
by industry for over 100 years [ 6 ]. In fact, the 
earliest example of nanosilver use can be traced 

to the Roman Lycurgus Cup, which is a bronze 
and glass cup created in the fourth century AD 
[ 8 ]. The glass material in the cup, which is able to 
scatter green light and transmit red light, contains 
particles that are 70 nm in diameter composed of 
silver (70 %) and gold (30 %). Nano titanium 
dioxide (nano TiO 2 ) is used in personal care 
products, such as sunscreens or toothpaste, food 
for coloring and texture, paints, and self-cleaning 
industry cleansers [ 9 ,  10 ]. Multi-walled carbon 
nanotubes have been used both in the electronic 
industry, and the textile industry, where it appears 
in the form of fl ame retardants in plastics, poly-
mers, and fabrics [ 11 – 13 ]. Clearly, nanomateri-
als are prevalent in many consumer products, and 
exposure to humans potentially exists in physical 
forms, such as dermal, ingestion, and inhalation. 

 While the release of ENMs from consumer 
goods is an inevitable outcome of human 
activity, such release is often intentional (e.g., 
disposal of used toothpaste down the drain, dis-
solution of nano Ag into sweat), which leads to 
not only human exposure, but also to discharge 
into the environment [ 10 ,  14 ]. Sewage has been 
identifi ed as a major conveyor of ENMs from 
consumer products and industrial processing 
[ 15 ]. The occurrence of ENMs in sewage can 
provide us one measure of the amount of human 
exposure that takes place. Therefore, proper 
sewage treatment becomes a critical interven-
tion strategy in order to prevent ENM release 
to the environment, and thus limit ecosystem/
human exposure to ENMs. ENMs can enter into 
wastewater treatment plants (WWTPs) through 
washing and other recreational activities [ 5 ,  16 ]. 
Nano Ag released from silver containing plas-
tics and textiles from daily washing enters drains 
and sewers and ends up in WWTPs [ 5 ,  17 , 
 18 ]. Similarly, Nano TiO 2  enters water caused 
by washing, bathing, and swimming [ 19 ,  20 ]. 
Both macro- and nano-scale TiO 2  have been 
detected in WWTP effl uents, with the majority 
of the Ti accumulated in biosolids. Nanosilver 
can be absorbed to biosolids and converted into 
nano- Ag 2 S under anaerobic conditions [ 21 – 24 ]. 
Recent work has shown that many ENMs can be 
removed from sewage water, and concentrated 
into biosolids ([ 5 ,  25 – 27 ]. 

Y. Yang and P. Westerhoff
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 In the U.S., 40 % of biosolids end up in land 
applications [ 28 ]. Land amendment, which occurs 
as a result of these biosolids, leads to the transport 
of ENMs into soils [ 22 ,  28 ]. Sanitary landfi ll sites, 
which receive used textiles (clothes, socks) and 
other consumer products, are another repository 
of ENM containing solid wastes [ 24 ,  29 ,  30 ]. Life 
cycle analyses have suggested that over 50 % of 
ENMs produced globally ends up in landfi lls [ 15 ]. 
Thus, the use of ENMs in consumer products can 
potentially affect solid waste treatment, and once 
again, landfi lls may emerge as a location to assess 
retrospectively changes in use patterns of prod-
ucts incorporating nanotechnology. 

 The rapid rise in nanotechnology applica-
tion in consumer products means that a more 
comprehensive investigation is needed into the 
exposure risks posed by ENMs to humans and 
the environment. David Warheit, who chaired the 
committee on health and environmental safety 
of nanomaterials for the European Centre for 
Ecotoxicology and Toxicology of Chemicals, has 
aptly remarked: “The number of implication stud-
ies has not caught up with the number of applica-
tion studies” [ 31 ]. Therefore, the need for more 
studies of ENM implication continues to grow. 

 To understand both the implication and appli-
cation aspects of ENMs, we provide here a com-
prehensive summary of consumer products that 
contain nanomaterials, potential paths for ENM 
release from consumer products, and the range 
of associated human exposure. Prospecting the 
presence of ENMs in water and sewer biosolids 
provides us with information and guidelines on 
toxicity tests, while addressing important ques-
tions: At what concentration levels do ENMs 
exist in the environment? Which chemical form 
of ENMs (e.g., oxidation state) should be tested 
for dose-response experiments?  

1.2     Categorization of Consumer 
Products with Nanomaterials 
from Databases 

 In 2005, The Woodrow Wilson International 
Center for Scholars initiated the Project for 
Emerging Nanotechnologies (PEN), which aimed 

to provide an inventory of nanotechnology- based 
consumer products (either containing nanoma-
terials or production processes incorporating 
nanotechnology). For simplicity, all the infor-
mation obtained from this project is cited as 
the Woodrow Wilson database in this chapter 
[ 32 ]. Originally, the inventory cited 54 different 
products in 2005; in 2011, the number of prod-
ucts increased to 1,317, representing a 24-fold 
increase during a 6-year period [ 32 ]. Of the total 
number of 1,317 products in 2011, 45 % (587), 
28 % (367), and 20 % (261) originated in the 
U.S., Europe, and East Asia, respectively [ 32 ]. 
The number of nanotechnology-based products 
was projected to continue as advances in nano-
technology were further applied to consumer 
products. This inventory provides information 
such as product name, company, manufacturer 
or supplier, country of origin, category and 
subcategory, product description, and date of 
update [ 32 ]. Updates to this inventory were 
halted in 2011, as funding and priorities changed. 
More recently, Virginia Polytechnic Institute 
and State University’s Center for Sustainable 
Nanotechnology (VT SuN) and the Woodrow 
Wilson International Center for Scholars have 
been partnering on a new effort to compile the 
Nano Consumer Products Inventory (NCPI), 
which incorporates the PEN dataset (  http://www.
nanotechproject.org/cpi/    ). 

 In 2010, an inventory of consumer products con-
taining nanomaterials published by the National 
Institute for Public Health and the Environment 
(RIVM) of Netherlands was made available in the 
European market. The RIVM, based on advertise-
ments of manufacturers, cited 858 products in 2010, 
showing a six-fold increase of 143 products that 
contained ENMs in 2007 [ 33 ]. Similar to the data-
base maintained by the Woodrow Wilson center, the 
RIVM stated the following: “No verifi cation of the 
actual presence of nanomaterials via measurements 
in claimed consumer products has been made” [ 33 ]. 

 We re-categorized product information in the 
RIVM database to be consistent with those used 
in Woodrow Wilson database. Figure  1.1  pro-
vides a comparison of the Woodrow Wilson and 
RIVM databases. The quantity of each product 
depicted here is based on this re-arrangement. 
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