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Preface

The authors start their book with basic question: Why is randomization ben-
eficial in the context of algorithms? Or, say it another way: When random
choice is better than deterministic one? This more general problem relates to
a lot of situations beyond the mathematical framework. One can remember
that random decisions were performed in ancient times, and the procedure
of drawing lots was very common. Moreover political events such as election
of governing officers in Athens were randomized. In our pragmatic age the
field of random decisions in everyday life became narrower, but surprisingly
mathematical algorithms opened the door for randomness. One of the first
examples is the mixed strategy in two-person games, invented by von Neu-
mann. However in the situations under consideration there is no “enemy”
to mislead, the randomness is introduced to accelerate algorithms or make
them more reliable. The first technique of this sort is the famous Monte-Carlo
method.

The authors carefully examine numerous applications of randomized al-
gorithms in statistics, optimization, control, data mining, machine learning.
They demonstrate serious advantages of the algorithms in various cases and
explain the reasons. Many of the proposed methods are new and are of wide
interest. If compared with some other books on randomized algorithms, this
monograph is not so specialized and is devoted to very broad field of problems.
One of the peculiarities of the monograph - it summarizes deep researches
in Russian-language literature which are not widely known to the Western
audience.

I believe that the readers will find the book “Randomized Algorithms in
Automatic Control and Data Mining” both fascinating and useful.

Boris Polyak,
Institute for Control Science, Moscow

IFAC Fellow
February 2014
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Introduction

In 1948 Norbert Wiener’s famous book
proclaimed the establishment of a new science of CYBERNETICS

in which the information–control relation
in the phenomena of the material world

plays the role of its fundamental property.
Vladimir Fomin, 1984 [118]

This text contains an exposition of randomized algorithms and their appli-
cations, thus providing some answers to the question: Why is randomization
beneficial in the context of algorithms?

From Scalability toward Adaptability:
Perspectives of Computing

In the new field of computers, the Olympic motto “Citius, Altius, Fortius”
has been transformed into a new slogan: “Fast, Powerful, Miniature”. In
fact, these ostensibly conflicting goals join together into one: the technology
approaching the creation of “mobile” artificial intelligence. Soon intelligent
embedded computing devices will be able to perform such functions that
computer users never even “dreamed” of a few years ago.

Throughout the history of civilization, there have been several informa-
tion revolutions — transformation of social relations based on the dramatic
changes in information processing and information technology. In each case,
new qualities of the human community were achieved every time as conse-
quences of these changes.
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The first information revolution began with the separation of human from
nature, as evidenced in rock painting and the appearance of the language that
was able to handle abstract concepts. The invention of writing knowledge to
be extended and preserved for transmission to future generations.

The next stage was the invention of printing, which radically changed the
society and culture. Books became the mass universal distributor and the
custodian of large volumes of information.

The era of electricity brought with it the capabilities of telegraph, tele-
phone, radio and television that allow information to be sent quickly to any
corner of the Earth.

In the wake of the Second World War and post-war economic development,
research studies in nuclear and micro-molecular physics, solid state electron-
ics and border effects led to the creation of the first industrial computing
devices, supporting the growth of a new industrial revolution. For a quarter
century these developments paved the way for a rapid burst of information
technologies.

When the universal, multi-functional, automatic electronic devices known
as computers were invented, they took over the majority of data processing,
filing and recording functions.

Let’s look at the history of the development of computer technology. For six
decades it has paved the way from electronic lamps through transistors and
integrated circuits to very large-scale integrated circuits. What will happen
next? The main question is how to handle the huge amount of data being
generated?

At the beginning of the twenty-first century we see that the technology-
driven complexity of economy and society is increasing. During the last quar-
ter of the twentieth century the human community was still an urban society
with an industrial economy and mass products technology, but now it is in-
creasingly characterized as a global society with a knowledge economy, and
digital technology. Earlier, a key resource was capital, but now it is knowl-
edge/information that dominates. Where earlier distribution focused early
on a motorways, now the digital networks have come to the forefront. Previ-
ously the scope was a regional but now it is mainly global. Economy of scale,
the undisputable key success factor the industrial economy, is less and less
important as the complexity (and dynamics) of the knowledge economy in-
creases. The new key success factor is ADAPTABILITY, which is the ability
to rapidly produce a positive response to unpredictable changes [280].

People have always been interested in artificial intelligence. By the late
twentieth century, the modeling of artificial intelligence was marked by two
main approaches:

• machine intelligence, involving the setting of strict results of operations;
• artificial mind, based on the modeling of the internal structure of auto-

mated systems to correspond to the structure of a human brain.
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But as of today, humanity has made a major move from the theories to
a new reality: the cybernetic future. Many signs indicate that we have now
entered a new phase — a cybernetic revolution.

New requirements and the challenges of globalization along with the expo-
nential increase in the complexity of computing systems have already pushed
us to think in practical terms about the prospects and possible changes in
the computing paradigm:

“What is the process of computing?”
Today’s objective trends are toward miniaturization and toward improve-

ment of processor performance. These trends have brought technology to the
threshold of traditional computing devices, as was predicted by Moore’s Law
[239]. Manufacturers are moving from priorities of increasing clock frequency
and the power of one CPU toward multi-core processors, parallelism and so
on.

Indeed, the standard for laptops today is to use multi-core processors,
and, of course, supercomputer processors have many more cores. Now that
“the genie is out of the bottle”, there must be consequences. Soon systems
will have dozens, and then thousands, of cores. Completely new architectures
will emerge. Cores will be combined into complex blocks, different computing
clusters will have parallel and simultaneous access to data, and computing
units will communicate through a common memory. In fact, many aspects
of the computing paradigm will change, including the nature of computing
devices and of computational processes.

The traditional understanding of what is inside a computer and what con-
stitutes a computing system will also change. These changes will lead to
transformations in programming style and in the way in which computational
devices are used.

The transition to a new paradigm of computing will probably cause the
architecture of computing devices to shift toward a set of concurrent asyn-
chronous models of interacting dynamical systems (functional elements). The
properties of stochastic, hybrid, asynchronous and cluster behavior (among
them the absence of rigid centralization and the dynamic clustering into
classes of related models) will be more apparent and dominant among the
new features of the future paradigm.

Stochasticity. It is well known that computers are becoming smaller and
smaller. The size of an elementary computational element (a gate) now ap-
proaches the size of a molecule or an atom. At this scale, the laws of classical
physics are not applicable and quantum laws begin to act, which, due to
Heisenberg’s uncertainty principle, conceptually do not give precise answers
about a system’s current state. On the other hand, stochasticity is a well
known property of complex dynamical systems comprising a large number of
components.

The hybrid nature of future computing necessitates the examination of a
combination of continuous and discrete processes, i.e., registering the contin-
uous evolution of physical processes during the work of this or that model
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and abruptly switching from one model to another. The increase in the speed
of computing devices and the reduction in their size inevitably lead to the
need for operations with “transitional” processes. A serious limitation of the
classical computation model is the separation of memory into isolated bits.
From a certain level, the reduction in the length of a clock cycle time (strobe
impulse) and in the distance between the bits makes it impossible to consider
bits to be isolated, due to the operation of the laws of quantum mechanics. In
the future it will be natural to switch from primitive operations with classical
bits to operations definable by certain micro-dynamic models that operate
with sets of related “bits”. In this case, classical operations with bits may
continue to be as simplest “models”.

Success in solving traditional complex multidimensional problems (such
as new algorithms working “per clock cycle”) is the rationale for examining
a wider class of models. Often it is possible to get an answer as a result of
a physical adiabatic process. For example, the classical operation on bits is
the transition of a physical system (trigger) from state “1” to “0”. P. Shor
suggested the quantum Fourier transform algorithm which can be performed
for a time proportional to (log2 N)2 and not for N log2 N , like the classical
fast Fourier transform [293]. For the 10th Hilbert problem, [316] discusses
solving the hypothetically possible “physical” method. The considered ap-
proach is based on the quantum adiabatic theorem and the algorithm works
finite time. In [325] the powerful quantum algorithm was proposed for “per
clock cycle” computation of efficient estimation of the gradient vector of the
multidimensional function defined with a high degree of uncertainty. The op-
erations typical of mathematical algorithms such as functions convolution can
fully be found “in nature”. Recent studies of similar models show that, due
to the inherent nature of the capacity for self-organization, their performance
is not necessarily separated into simpler computing blocks, i.e. they cannot
always be written in the form of classical algorithms. One of the possible
examples of an “analog” implementation of a function convolution using a
large regular array of quantum dots with typical sizes of up to 2 nm can be
found in [147].

Asynchrony. The refusal to use the standardized simple computing primi-
tives inevitably leads to the refusal to synchronize the work of various com-
ponents having significantly different physical characteristics and their own
internal durations of “clocks”. Within the framework of the classical set the-
ory a controversial interpretation of the unified “clock cycle” concept is ex-
pressed in the insolubility of the problem of the continuum in the terms of
Zermelo-Fraenkel axioms.

Clustering. Among the unexpected results of numerous attempts at de-
veloping complex stochastic systems (the creation of an adequate descrip-
tion of behavior and control) is the promising multi-agent systems model,
in which the agents’ connections topology changes in time. In this case, the
notion of an agent may match both some dynamical model (a system compo-
nent) and a specific set of models. In the absence of rigid centralization, such


