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Preface

Interconnect has become a crucial element in advanced electronic systems. State-of-

the-art CMOS processes utilize 10 or more layers of metal above the active transis-

tors, so these interconnect layers dominate processing costs. In recent years, inter-
connect power and interconnect delay have become major limiters for VLSI

technology. Interconnect engineering—designing on-chip wires to satisfy perfor-

mance requirements while meeting power, reliability, and cost specifications—is

currently one of the most challenging tasks faced by product development teams.

Significant difficulties arise because traditional approaches to the physical design of

wires do not capture the interaction among multiple nets in complex interconnect

structures.

While the downscaling of device sizes led to continuous improvement in the

properties of transistors, it caused significant degradation in properties of the metal

wires that are used as system interconnects. Wires have become limiters of speed,

power dissipation, and reliability because of their growing resistance and capaci-

tance in scaled fabrication processes. Interconnect issues have major implications

on circuit architecture, design methodologies, and CAD tools. Timing/power/noise

trade-offs have become interconnect centric, hence such trade-offs must be made

during placement and routing of cells and wires.

Due to nonuniform scaling of wire thickness and wire width, net-to-net cross-

capacitance between adjacent wires constitutes the largest part of total interconnect

capacitance. Line-to-line cross-capacitances within the same metal layer are impor-

tant determinants of speed and power so that mutual effects between parallel

adjacent wires must be considered during the physical design of the circuit layout.

Consequently, the spacing distance between wires on the chip has become a highly

important resource, which deserves careful allocation and optimization. Since each

space represents mutual interaction between two adjacent wires, simultaneous
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optimization of multiple wires is called for. However, tools and methodologies for

VLSI layout generation typically work net by net, handling a single wire at a time.

This book integrates our research, our industrial experience, and our teaching

experience in the field. It is focused on simultaneous optimization of multiple nets,
considering the mutual interaction between wires. New techniques for layout

migration and optimization are presented, employing multinet optimization. The
interconnect layout area in each metal layer is regarded as a common resource

shared by the wires. Multinet optimization allocates this resource by applying novel

algorithms based on unique properties of the optimization problems considered.

The material includes optimization under discrete (gridded) design rules for

advanced lithography processes. Mathematical properties and conditions for opti-

mality of multiwire layout structures are derived, algorithmic solutions are

described and analyzed, design automation flows are described, and industrial

examples in advanced nanoscale technology are presented.

The book is comprised of three major parts. The first part includes background

material and introduction to the field, the second part is mostly a survey of classical

net-by-net optimization techniques in VLSI circuit design, and the third part covers

research on multinet optimization.

In the first part of the book, evolution of the interconnect scalability problem is

described in Chapter 1 from both theoretical and practical viewpoints. In Chapter 2,

interconnect aspects in design methodology and CAD tools are briefly reviewed,

primarily for readers who are not familiar with practical details of layout design. In

Chapter 3, a tutorial of scaling theory and electrical modeling of interconnects is

given.

In the second part, Chapter 4 provides a classification of optimization problems

and solution techniques in interconnect layout design, emphasizing the overall

differences between net-by-net approaches and multinet approaches, and stressing

the advantages of the latter approach. Chapter 5 contains a concise summary of

methods in net-by-net interconnect and circuit optimization, covering both classical

results and recent research results, such as a new unified logical effort theory.

The third and largest part of the book consists of Chapters 6–9, covering new

multinet optimization approaches. Chapter 6 is focused on a simple (but very

common) layout structure called a bundle of wires. It is simply a set of adjacent

equal-length parallel wires in a single layer. Due to its simplicity, this specific

layout pattern provides good insight, analytic results, and properties that are useful

for optimizing various design objectives where the optimization variables are the

individual wire widths and the spaces between adjacent wires. In Chapter 7, the

same optimization problems are applied to general wire layouts rather than bundles,
where the generalized wire structure is described by a visibility graph. In Chapter 8,

the simple bundle of wires is revisited, but a different kind of optimization is used,

namely, reordering of the wires within the bundle in addition to sizing and spacing.
In Chapter 9, a hierarchical solution is presented for the problem of layout migra-
tion. The contribution of Ron Pinter and Yuval Shaphir to this chapter is hereby

gratefully acknowledged. In Chapter 10, future research and development direc-

tions in interconnect design are outlined.
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For us, this book is a summary of many exciting endeavors performed over many

years of work in this field. We hope it will help students, researchers, and engineers

and inspire them to find creative solutions to system interconnect issues in future

generations of technology.

Intel, Haifa, Israel Konstantin Moiseev

Technion, Haifa, Israel Avinoam Kolodny

Bar-Ilan University, Ramat-Gan, Israel Shmuel Wimer
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