Konstantin Moiseev - Avinoam Kolodny Shmuel Wimer

Multi-Net Optimization of VLSI Interconnect

Konstantin Moiseev · Avinoam Kolodny Shmuel Wimer

Multi-Net Optimization of VLSI Interconnect

Multi-Net Optimization of VLSI Interconnect

Konstantin Moiseev • Avinoam Kolodny Shmuel Wimer

Multi-Net Optimization of VLSI Interconnect

Konstantin Moiseev Intel Haifa, Israel

Shmuel Wimer Bar-Ilan University Ramat-Gan, Israel Avinoam Kolodny Technion Haifa, Israel

ISBN 978-1-4614-0820-8 ISBN 978-1-4614-0821-5 (eBook) DOI 10.1007/978-1-4614-0821-5 Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2014953304

© Springer Science+Business Media New York 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To our many Intel colleagues and friends, who taught us and learned from us.

Preface

Interconnect has become a crucial element in advanced electronic systems. State-ofthe-art CMOS processes utilize 10 or more layers of metal above the active transistors, so these interconnect layers dominate processing costs. In recent years, *interconnect power* and *interconnect delay* have become major limiters for VLSI technology. Interconnect engineering—designing on-chip wires to satisfy performance requirements while meeting power, reliability, and cost specifications—is currently one of the most challenging tasks faced by product development teams. Significant difficulties arise because traditional approaches to the physical design of wires do not capture the interaction among multiple nets in complex interconnect structures.

While the downscaling of device sizes led to continuous improvement in the properties of transistors, it caused significant degradation in properties of the metal wires that are used as system interconnects. Wires have become limiters of speed, power dissipation, and reliability because of their growing resistance and capacitance in scaled fabrication processes. Interconnect issues have major implications on circuit architecture, design methodologies, and CAD tools. Timing/power/noise trade-offs have become interconnect centric, hence such trade-offs must be made during placement and routing of cells and wires.

Due to nonuniform scaling of wire thickness and wire width, net-to-net crosscapacitance between adjacent wires constitutes the largest part of total interconnect capacitance. Line-to-line cross-capacitances within the same metal layer are important determinants of speed and power so that mutual effects between parallel adjacent wires must be considered during the physical design of the circuit layout. Consequently, the spacing distance between wires on the chip has become a highly important resource, which deserves careful allocation and optimization. Since each space represents mutual interaction between two adjacent wires, simultaneous optimization of multiple wires is called for. However, tools and methodologies for VLSI layout generation typically work net by net, handling a single wire at a time.

This book integrates our research, our industrial experience, and our teaching experience in the field. It is focused on *simultaneous optimization of multiple nets*, considering the mutual interaction between wires. New techniques for layout migration and optimization are presented, employing *multinet optimization*. The interconnect layout area in each metal layer is regarded as a common resource shared by the wires. Multinet optimization allocates this resource by applying novel algorithms based on unique properties of the optimization problems considered. The material includes optimization under discrete (gridded) design rules for advanced lithography processes. Mathematical properties and conditions for optimality of multiwire layout structures are derived, algorithmic solutions are described and analyzed, design automation flows are described, and industrial examples in advanced nanoscale technology are presented.

The book is comprised of three major parts. The first part includes background material and introduction to the field, the second part is mostly a survey of classical net-by-net optimization techniques in VLSI circuit design, and the third part covers research on multinet optimization.

In the first part of the book, evolution of the interconnect scalability problem is described in Chapter 1 from both theoretical and practical viewpoints. In Chapter 2, interconnect aspects in design methodology and CAD tools are briefly reviewed, primarily for readers who are not familiar with practical details of layout design. In Chapter 3, a tutorial of scaling theory and electrical modeling of interconnects is given.

In the second part, Chapter 4 provides a classification of optimization problems and solution techniques in interconnect layout design, emphasizing the overall differences between net-by-net approaches and multinet approaches, and stressing the advantages of the latter approach. Chapter 5 contains a concise summary of methods in net-by-net interconnect and circuit optimization, covering both classical results and recent research results, such as a new unified logical effort theory.

The third and largest part of the book consists of Chapters 6–9, covering new multinet optimization approaches. Chapter 6 is focused on a simple (but very common) layout structure called a *bundle* of wires. It is simply a set of adjacent equal-length parallel wires in a single layer. Due to its simplicity, this specific layout pattern provides good insight, analytic results, and properties that are useful for optimizing various design objectives where the optimization variables are the individual *wire widths* and the *spaces* between adjacent wires. In Chapter 7, the same optimization problems are applied to *general wire layouts* rather than bundles, where the generalized wire structure is described by a visibility graph. In Chapter 8, the simple bundle of wires is revisited, but a different kind of optimization is used, namely, *reordering of the wires* within the bundle in addition to sizing and spacing. In Chapter 9, a hierarchical solution is presented for the problem of *layout migration*. The contribution of Ron Pinter and Yuval Shaphir to this chapter is hereby gratefully acknowledged. In Chapter 10, future research and development directions in interconnect design are outlined.

Preface

For us, this book is a summary of many exciting endeavors performed over many years of work in this field. We hope it will help students, researchers, and engineers and inspire them to find creative solutions to system interconnect issues in future generations of technology.

Intel, Haifa, Israel Technion, Haifa, Israel Bar-Ilan University, Ramat-Gan, Israel Konstantin Moiseev Avinoam Kolodny Shmuel Wimer

Contents

1	An Overview of the VLSI Interconnect Problem					
	1.1	Driving Forces: Economy and Technology	1			
	1.2	Complexity and Connectivity: A System				
		Architect's View	2			
	1.3	Complexity and Connectivity: A Process				
		Technologist's View	4			
	1.4	The Interconnect Scaling Problem	5			
	1.5	Implications of the Interconnect Scaling Problem				
	1.6	The Value of Multi-net Optimization				
2	Inte	rconnect Aspects in Design Methodology				
	and	EDA Tools	11			
	2.1	Interconnect Planning	11			
	2.2	Interconnect Synthesis	13			
	2.3	Final Generation of Interconnect Layout				
	2.4	Future Requirements for Interconnect Synthesis				
3	Scaling Dependent Electrical Modeling of Interconnects					
	3.1	1 Technology Scaling				
		3.1.1 Scaling of Transistors	17			
		3.1.2 Scaling of Interconnects	18			
	3.2	Circuit Models of Interconnect	18			
		3.2.1 Ideal Interconnect	19			
		3.2.2 Capacitive Interconnect	20			
		3.2.3 Resistive Interconnect	21			
		3.2.4 Resistive Interconnect Trees	22			
	3.3	Scaling Effects on Interconnect Delay	26			
	3.4	Cross-Capacitances and Their Decoupling				
		with Miller Factor	28			
	3.5	Interconnect Power				
	3.6	Interconnect Noise (Crosstalk)	31			

4	Frameworks for Interconnect Optimization					
	4.1	Net-b	y-Net Optimization	35		
	4.2	Multi	-net Optimizations	38		
		4.2.1	Bundle of Wires	38		
		4.2.2	General Wire Layouts with a Preferred Direction	40		
		4.2.3	Optimization by Wire Ordering	41		
		4.2.4	Interconnect Optimization in Automated			
			Layout Migration	41		
		4.2.5	Summary of Interconnect Optimization			
			Frameworks	41		
_				10		
5	Net	·by-Net		43		
	5.1	Single	-Stage Point-to-Point Wires	43		
		5.1.1	Stage Delay with Capacitive Wire			
			(Negligible Wire Resistivity)	43		
		5.1.2	Stage Delay with Resistive Wire	45		
		5.1.3	Repeater Insertion	46		
		5.1.4	Wire Sizing (Tapering)	47		
	5.2	Multis	stage Logic Paths	52		
		5.2.1	Logical Effort Optimization	52		
		5.2.2	Logic Gates as Repeaters	54		
		5.2.3	Unified Logical Effort – Combined			
			Optimization of Gates and Wires	54		
	5.3	Tree-S	Structured Nets	60		
6	Mul	ti-net S	Sizing and Spacing of Bundle Wires	63		
	6.1	The Interconnect Bundle Model				
	6.2	Power	r. Delay and Noise Metrics for a Bundle			
		of Par	allel Wires	66		
		6.2.1	Calculating Parameters of Effective			
			Driver and Effective Load	66		
		6.2.2	The Role of Cross-Capacitance in Delay and Power			
			Calculations for a Bundle of Parallel Wires	68		
		6.2.3	Calculations for a Bundle of Parallel Wires Power and Delay Objectives for Optimizing	68		
		6.2.3	Calculations for a Bundle of Parallel Wires Power and Delay Objectives for Optimizing a Bundle of Wires	68 71		
	63	6.2.3 Bundl	Calculations for a Bundle of Parallel Wires Power and Delay Objectives for Optimizing a Bundle of Wires	68 71		
	6.3	6.2.3 Bundl Desig	Calculations for a Bundle of Parallel Wires Power and Delay Objectives for Optimizing a Bundle of Wires le Spacing and Sizing with Continuous n Rules	68 71 73		
	6.3	6.2.3 Bundl Desig	Calculations for a Bundle of Parallel Wires Power and Delay Objectives for Optimizing a Bundle of Wires le Spacing and Sizing with Continuous n Rules Optimizing the Total Power of a Wire Bundle	68 71 73 73		
	6.3	6.2.3 Bundl Desig 6.3.1 6.3.2	Calculations for a Bundle of Parallel Wires Power and Delay Objectives for Optimizing a Bundle of Wires le Spacing and Sizing with Continuous n Rules Optimizing the Total Power of a Wire Bundle Optimizing the Total Sum (or Average)	68 71 73 73		
	6.3	6.2.3 Bundl Desig 6.3.1 6.3.2	Calculations for a Bundle of Parallel Wires Power and Delay Objectives for Optimizing a Bundle of Wires	68 71 73 73 75		
	6.3	6.2.3 Bundl Desig 6.3.1 6.3.2	Calculations for a Bundle of Parallel Wires Power and Delay Objectives for Optimizing a Bundle of Wires	68 71 73 73 75		
	6.3	 6.2.3 Bundl Desig 6.3.1 6.3.2 6.3.3 	Calculations for a Bundle of Parallel Wires Power and Delay Objectives for Optimizing a Bundle of Wires	68 71 73 73 75 78		
	6.3	 6.2.3 Bundl Desig 6.3.1 6.3.2 6.3.3 6.3.4 	Calculations for a Bundle of Parallel Wires Power and Delay Objectives for Optimizing a Bundle of Wires	68 71 73 73 75 78		
	6.3	 6.2.3 Bundl Desig 6.3.1 6.3.2 6.3.3 6.3.4 	Calculations for a Bundle of Parallel Wires Power and Delay Objectives for Optimizing a Bundle of Wires	68 71 73 73 75 78 81		

		6.3.5	The Relation Between the Minimal Total Sum and MinMax Solutions	87					
	64	Bundl	e Spacing and Sizing with Discrete Design Rules	90					
	0.4	641	Introduction to Discrete Design Rules Problems	91					
		642	Formal Definition of Discrete-Rule	71					
		0.1.2	Bundle Problems	92					
		643	Discrete Width and Space Allocation	1					
		0.1.5	in Homogeneous Interconnect Bundle	95					
7	Mul	ti-net S	Sizing and Spacing in General Layouts	107					
	7.1	A One	e-Dimensional Single Objective						
		Spaci	ng Problem	109					
		7.1.1	Problem Definition	109					
		7.1.2	Necessary and Sufficient Conditions						
			for Minimal Power	111					
		7.1.3	A Graph Model for the Spacing Problem	115					
		7.1.4	An Algebraic Solution for Power Minimization	119					
		7.1.5	Iterative Algorithms for Power Minimization	120					
		7.1.6	Maintaining Delay Constraints while						
			Minimizing Power	125					
	7.2	Optim	ization of the Weighted Power-Delay Objective	129					
		7.2.1	Problem Definition	129					
		7.2.2	Solution of the Optimal WPDS	133					
		7.2.3	Practical Considerations in Power–Delay						
			Optimization	134					
	7.3	Optim	nizing All the Layers Together	136					
		7.3.1	Timing InterDependency Between Wire						
			Segments in a Net	136					
		7.3.2	Nonoptimality of Wire-by-Wire Optimization	137					
		7.3.3	All-Layers Optimization Problem Definition	140					
		7.3.4	Algorithm for a Solution of the Optimal						
			Spacing Problem	148					
		7.3.5	Practical Considerations	152					
		7.3.6	Layout Separation	153					
		7.3.7	Examples and Experimental Results	155					
	7.4	Discu	ssion on the Optimization of General Layouts						
		with I	Discrete Design Rules	159					
		7.4.1	A Graph Model of Wire Width and Space	159					
		7.4.2	Complexity Analysis	163					
		7.4.3	Implementation and Experimental Results	164					
	Con	clusion	-	165					
8	Interconnect Optimization by Net Ordering								
	8.1	Proble	em Formulation	169					
	8.2	The C	Optimality of Symmetric Hill Order	171					