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Margo, Alan, and Asha in Paris at the lovely Fontaine des Quatre Parties du Monde.
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Preface

Alan Weinstein is one of the top mathematicians in the world working in the area
of symplectic and differential geometry. His research on symplectic reduction, La-
grangian submanifolds, groupoids, applications to mechanics, and related areas has
had a profound influence on the field. This area of research remains active and vi-
brant today and this volume is intended to be a reflection of that vigor. In addition
to reflecting the vitality of the field, this is a celebratory volume to honor Alan’s
60th birthday. His birthday was also celebrated in August, 2003 with a wonderful
week-long conference held at the ESI: the Erwin Schrödinger International Institute
for Mathematical Physics in Vienna.

Alan was born in New York in 1943. He was an undergraduate at MIT and a
graduate student at UC Berkeley, where he was awarded his Ph.D. in 1967 under the
direction of S. S. Chern. After spending postdoctoral years at IHES near Paris, MIT,
and the University of Bonn, he joined the faculty at UC Berkeley in 1969, becoming
a full Professor in 1976.

Alan has received many honors, including an Alfred P. Sloan Foundation Fel-
lowship, a Miller Professorship (twice), a Guggenheim Fellowship, election to the
American Academy of Arts and Sciences in 1992, and an honorary degree at the
University of Utrecht in 2003.

At the ESI conference, S. S. Chern, Alan’s advisor, sent the following words to
celebrate the occasion:

“I am glad about this celebration and I think Alan richly deserves it. Alan
came to me in the early sixties as a graduate student at the University of
California at Berkeley. At that time, a prevailing problem in our geometry
group, and the geometry community at large, was whether on a Riemannian
manifold the cut locus and the conjugate locus of a point can be disjoint.
Alan immediately showed that this was possible. The result became part of
his Ph.D. thesis, which was published in the Annals of Mathematics. He
received his Ph.D. degree in a short period of two years. I introduced him
to IHES and the French mathematical community. He stays close with them
and with the mathematical ideas of Charles Ehresmann. He is original and
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often came up with ingenious ideas. An example is his contribution to the
solution of the Blaschke conjecture. I am very proud to count him as one of
my students and I hope he will remain interested in mathematics up to my
age, which is now 91.’’

Alan’s technical contributions are wide ranging and deep. As many of his early
papers in his publication list illustrate, he started off in his thesis and the years im-
mediately following in pure differential geometry, a topic he has come back to from
time to time throughout his career.

Already starting with his postdoc years and his early career at Berkeley, he became
interested in symplectic geometry and mechanics. In this area he rapidly established
himself as one of the world’s authorities, producing important and deep results ranging
from reduction theory to Lagrangian and Poisson manifolds to studies of periodic
orbits in Hamiltonian systems. He also did important work in fluid mechanics and
plasma physics and through this work, he established warm relations with the Berkeley
physicists Allan Kaufman and Robert Littlejohn.

Alan’s important work on periodic orbits in Hamiltonian systems led him even-
tually to formulate the “Weinstein conjecture,’’ namely that for a given Hamiltonian
flow on a symplectic manifold, there must be at least one closed orbit on a regular
compact contact type level set of the Hamiltonian. Along with Arnold’s conjecture,
the Weinstein conjecture has been one of the driving forces in symplectic topology
over the last two decades.

Alan kept up his interest in symplectic reduction theory throughout his later work.
For instance, he laid some important foundation stones in the theory of semidirect
product reduction as well as in singular reduction through his work on Satake’s
V -manifolds, along with finding important links with singular structures in moduli
spaces.

Intertwined with his work on symplectic geometry and mechanics, he did exten-
sive work on geometric PDE, eigenvalues, the Schrödinger operator and geometric
quantization. Alan took the point of view of microlocal analysis and phase space
structures in his work in this area, emphasizing the links with quantum mechanics.
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His work on the limit distribution of eigenvalue clusters in terms of the geodesic Radon
transform of the potential inspired a large number of related articles. He showed that
the geodesic flow of a Zoll surface was symplectically equivalent to that of a round
sphere, and hence that its Laplacian could be conjugated globally to the round Lapla-
cian plus a pseudodifferential potential. This work inspired many other results on
conjugacies.

One of Alan’s fundamental contributions to Poisson geometry was the introduc-
tion of symplectic groupoids in 1987, which marks the official beginning of his “oids’’
period. In these works, he makes sweeping generalizations about a wide variety of
constructions in symplectic geometry, including (with Courant) the important notion
of Dirac structures. During this period of generalizations he constantly returned to
specific topics in symplectic and Poisson geometry, such as geometric phases and
Poisson Lie groups, in addition to making other key links. For instance, symplec-
tic groupoids are used to link Poisson geometry to noncommutative geometry, and
groupoids are also intimately related to many other areas, including symmetries and
reduction, dual pairs, quantization and the theory of sigma models. One of the central
ideas is that the usual theory of Hamiltonian actions, momentum maps, and sym-
plectic reduction makes sense in the more general context of actions of symplectic
groupoids; in this setting, momentum maps are Poisson maps taking values in general
Poisson manifolds, rather than just Lie–Poisson manifolds (that is, duals of Lie alge-
bras). Alan has raised the question of whether this framework can be further extended
to include new notions of momentum maps such as quasi-Poisson manifolds with
group-valued momentum maps as well as optimal momentum maps.

Alan is well known not only for his brilliant papers and conjectures, but also
for his general philosophy, such as the symplectic creed: Everything is a Lagrangian
submanifold . Those of us who know him well also appreciate his very special insight.
For example, in the middle of a discussion (for instance, as we both had in our
joint works on semidirect product reduction as well as stability theory) he will say
something like what you are really doing is. . . and then give us some usually very
special insight that invariably substantially improves the whole project.

Alan also has a very interesting and charming sense of humor that even makes
its way into his papers from time to time. For instance, Alan had great fun in his
papers with the “East Coast–West Coast’’ discussions of whether one should use the
term momentum map or moment map. He also gave us a good laugh with the term
symplectic bones as it relates to the French translation of Poisson as Fish.

Alan is a great educator. His lectures, even on Calculus, are always a treat and are
very inspiring for their special insight, their wit and lively presentation. His enthu-
siasm for mathematics is infectious. One story that comes to mind on the education
front is this: during the days when he was exceptionally keen about groupoids, he
was preparing a lecture for undergraduates on the subject. Some of us convinced him
to present it as a colloquium lecture for faculty, keeping in mind the old advice “no
colloquium talk can be too simple.’’ It was, in fact, not only a beautiful colloquium
talk, but was perfectly pitched for the faculty, and it became a popular article in the
Notices of the American Mathematical Society. Part of being a good educator is being
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cognizant of history.Alan excels in this area. For instance, his research into the history
of Lie is what led directly to the introduction of the term “Lie–Poisson’’ bracket.

The papers in this volume were selected by invitation and all of them underwent
a rigorous refereeing process. While this process took some time, it resulted in high
quality papers. We thank all of the referees for their diligent and helpful work. The
authors of this volume represent some of the best workers in the subject and their
contributions span a wide range of the topics covered by symplectic and Poisson
geometry and mechanics, broadly interpreted.

The intended audience for the book includes active researchers in the general
area of symplectic geometry and mechanics, as well as aspiring graduate students
who wish to learn where the subject is headed and what some of the current research
topics are.

Alan and Margo have a special relationship to Paris. They have spent many happy
times there, and we wish them all the best and many more happy visits in the years
to come.

We wish to thank Ann Kostant for her expert editorial guidance throughout the
production of this volume. Of course, we also thank all the authors for their contribu-
tions as well as their helpful guidance and advice. The referees are also thanked for
their valuable comments and suggestions.

Jerry Marsden and Tudor Ratiu
September, 2004
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